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RECONIMENIMTIONS FOR LNU31ERICAL SOLUTIONT OF REN?ORCED-
I?USELAGE-RIN(2 PROBLEMS

Fly hr. J. HOFF and PAUL A. LLBBY

SIJMJ1.iRY

Procedures are recommcndedfor swll<ng the equations oj equi-
librium oj reinjorccd panels and isolated fuseiage rings as rep-
resented by the external loads and the operations table established
according to South well’s method. From fhe .wlufion oj these
equatiiins fhe sfrew distribution can be cas-ily determined. The
recommendations are bawd on the e.rperience oj fhe pasf J years
in applying numerical procedures to monocoque stress analysis
af the Polytechnic Instifufe of BroolJyn Aeronautical Labora-
tories. The method ~f ~ystematic relaxation%, the matrix-cal-
cdus method, and wreral other methods applicable in special
cases are discussed.

I?<finite recoin mcndations are made jor obtaining fhe solution
q~ rein-forced-pa n~l problems which are g.enerally des-ignafed as
shear lag problems. The procedi.wes recommended are demon-
strated in the analy.s+s qf a number oj panels, .swwal of which
were di.vcussed in prmiou~ PIB.4L reports, tchereas others are
shown -for fhejirst time.

In the case o-fjuselage rings if is not possible fo make dejin ife
recoin mend ations-for the solufion ~f the equilibrium equations
for all rings and loadings. Ho~c~wr, swggestio[is bawd on the
latest experience are made and demonstrated on sewral rings.

INTRODUCTION

The application of the indirect methods of Cross (refer-
ence 1) and SouthweLl (reference 2) to the arualysis of mono-
coque structures has bee~ shown in a series of in-restigations
(references 3 to S) carried out at. the Polytechnic Institute
of BrookI-yn Aeronautical Laboratories. These indirect
methods are likely to lead to soIutions of problems in stress
analysis that are iritra.ctable by direct analytical methods
because the structure is taperecl, it has large cutouts, its rein-
forcing elements are distributed irregularly, or the like.

The distorted shape corresponding to equilibrium under
the appIie(l loads is determined first in the indirect methods.
From it. the stresses, forces, aricI moments required can be
calculated without diEEcuIty. This approach is justified by
the comparative ease with w“tich the stresses in a compIex
structure can be determined for- an inclitidual cIispIacement
of one point ancl with which the final distorted shape of a com-
plex structure can be represented by a summation of such
individual displacements.

The complete structure is considered to be composecl of
appropriate elements and its cleemees of freeclom are the clis-
placernents of the severa~ reference points on the bounclary
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of each eIement. Each of these points is dispIaced
and the reactions at the reference points caused by

in turn

the dis-
placement are listed. If by suitable displacements of all
points the reaction forces and moments are made equal and
opposite to the externaI Ioads at each point, the whoIe struc-
ture is in equilibrium and its distorted shape is determined.

In applying the indirect methods to monocoque structures
the terminology of Southwell (reference 2) has been retained.
Thus, the elements -which compose the complete structure
are’ runits” and the determination of the forces and moments
due to z displacement of a boundary point of such units is
termed the” unit problem.” The magnitudes of these forces
ancl moments are gi~en by “ infIuence coefficients.” The
compIete effect of a displacement is given in an “operations
table, ” ancl the step-by-step process, which CUD be em-
p~oyed to determine the equilibrium distorted shape, is
calIed the “method of s-ystematic relaxat io~<.” At each
step of this process forces and moments referred to as “ re-
siduals” remain unbaJa.ncecI at each point in the structure.
A runnin g account of the resicluak ancl of the ckplacements
or ‘(operations” undertaken is kept in the “relaxation table. ”

The operations table along -with the externaI forces con-
stitutes a system of linear equatio~=, wfich are equal in
number to the degrees of freedom of the structure and which
have as ~ariables the clkplacernents. Each equation repre-
sents the condition of equilibrium for the force or moment.
associated fith one degree of freedom. Ti%eu the method of
systematic relaxations is applied an approximate solution
to this system of equations and accordingly an approximate
equilibrium state of the structure are founcl.

The inclirect method of anaIysis just outlined has been
applied at PIBAL to the reinforced-paneI a-rid ring com-
ponents of a monocoque structure m weIl as to complete
eircukr cylinders with and without cutouts. In references
3 and 4 the. stress cListribution in the sheet and stringers of a
reinforcd panel w-as determined under loads appIierl paraIlel
to the stringers. FuseIage rings -with and without. internaI
bracing eIements -were investigated in reference 5. .The
determinatio~ of the influence coefficients for the ring tit
problem was founcl to in-rol-re considerable computational
-work and therefore appropriate graphs and tables me given
in reference 6 to facilitate their caIculntion. In references 7
ancl S the elements, namely, the reinforced paneI and the
r~g, are comb~ed into a c~c~dar cy~der and the stress

dist ribut iou in the cylinder was in-restiga ted for the case
when the loacling is a pure bending moment,
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In tk e application of the indirect-stress-analysis methods
to the problems mentioned the m~jor Obst%cle has been to
find an approximate solu~icm of the system of equations with
a reasonable expenditure of effort. In each problem it his
been reaclily possible to eshblish satisfactory units and to
combine them to represent the compIex structure. During
the past 4 years considerable experience has been gained at
PIBAL in overcoming this obstacle to the wider application
of numerical procedures in the analysis of monocoque struc-
tures. On the basis of this experience some recommendations
can be made as to the most expeditious method of solving

reinforced-paneI and fuselage-ring problems after the opwa-
t ions table has been est ablisLed as clescribed in references 3
(0 5.

In many problems solution of the set of linear equations
by means of m~trix algebra was found easier and Iess time
consuming than the. determination of the displacements by
systematic relaxations. In other cases special methods, such
as the growing-unit method} proved to be most expeditious.

It is assumed that the reader is familiar with the termi-
nology of Southwell’s rekisation method and with the solu-
tion of the unit problem as welI as the establishment of the
operations tabIe for both the reinforced-panel and fuselage-
ring problems. Complete details of these are given in
references 3 to 6.

This work, cm’ried out at the l?oIytechnic Institute of
Brooklyn, was sponsored by and conducted l~rith t~~efinancial
assistance of the ~~a.tional Aclvisory Committee for Aero-
naut its. Jlr. Arnold O. Ostrand contributed the growing-uni~
method for reinforced panels. The authors also wish to
ackno~~ledge their indebtcchwss to the folIowing members of
the staff of the l?oIytechnic Institute of Brooklyn: Professors
George B. Hoadley and Wfiliam JlacLean of the Dep~rt-
ment of Electrical Engineering for their work on the electric
zntilogue, Mr. Burton Erickson for carrying out the major
~ortion of the computations, and Dr. Bruno A. Boley for his
di torial advice.
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SYillBOLS

cross-sectional area. of stringer and efl’ective sheet
points on a ring or a reinforced panel; group

operations
effective shear area of ring section
clistance beiween adjacent IongituclinaI stringers
distance between adjacent transverse stringers
electrical conductance
Young’s modulus of elasticity
tensile force in st~hger; applied external load
shear modulus of elasticity
horizontal direction
moment of inertia. of cross section; electrical

current
group operations
length of straight bar or length of m-c of curved

bar
bending moment
moment zc[ing on a joint
shear flow
radial force acting at a joint; electrical resistance
tangential force acting on a joint

i! shw t thickness
u clisplacement of a joint in tmgential direction
17 electrical potential; vcrtieaI dircctio]l
‘o dispktcement of n joint in r~diaI (Iircction; dis-

placement of a joint in vertirfll dircc[io[l
~lblock vertical blork displticcment
w rotation of a joint.
x magnitude of group operation to ?.xJJctcrmincd

x, Y rectangular morclinatcs
Y: force in y-axis direction

P angle subtended by ring segment

T section-Ienglh parameter (AL2/1)

t ratio of effective shtwr area to t-vusio]l area (.i*/A)
z sumrnalt ion

REINFORCED PANELS
INTRODUCTION

ln [his section plane and slightIy CUrYL’[1 reinforced panvls
are discussed when the loads arc appli(e[l ill the pl~n~ of thu
flat panels or tangentially to the surftice of the slightly
curved panels.

In most airplane structures ther~’ is a prc[lomin~~nt dir~c-
tion in which the major forces act and in wllirh the major
reinforctig eIements lie. \~~en the pancI is symmetric a~~(l
symmetrically loaded experience hns sho}vln tlul~ it sufl~ccs
to consider displacements an(l force equilibrium in the
predominant direction only. Evwl Trhen [he slructurc or
the loads me nonsymmetric, the (Iisplaccmcn(s atd forces
in the transverse direction are uslmIIy of secondary in~pnr-
tznce but they may be considered in a more refined a]]alysis.

In references 3 and 4 numerical ~)rouwlurcs for Lhc dctcr-
rnination of the stress distribution in reinforced Imnr]s
subjected to axial stringer loa(k Rrc dcvcbpcd aml den~on-
strated on several flat tind curved pan~’ls with and ~vilhuut
cutouts. The results obtaine(l by mcwns of [hcsc procmlurcs
are in good agreement. with those of tests.

Solution of the system of equations rcprcscntc(l by &
operations table and the externaI forces can IN follnd IJY
several metho(ls, five of’ which arc de.scribwi hcreiu. TILC
various con~litions of loarling an(l structure tvhich SUggcSL

the use of one method rather than another are discussed.

RELAXA~OI$ hi12THOI)

For most reinforced-panel proMems the rdasa[ion method
of solution is th~ most suitabIc. simple group an(l block
operations lead to a rapid elimination of ~he residunIs an(l
require li~tle initi~tive on the part. of th(~ cmnplu~(cr fumiliar
with the sequence of step-by-step operations. The mclhod,
however, is not efficient, in th~ cast of PRHCISwith many
bays in the direction of the stringtr lords or panels witIl
sheet covering of large shearing rigidity, since larg-c forces
are then introduced into adjacent stringers when OIW
stringer is balanced. These forces in turn must be liqui(latcd
in successive operations with the conscqucncc tIN~t the
procedure becomes time consuming. Also in problcrns
involving many Ioacling conditions it may be expeditious
Lo use the electric-analogy method described in the scclion
entitled “Electric Al~aIogue, ” since in tlw rdaxm[ion
method each new loading requires n c’\Y Stlq)-by-stup
operations.
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In this section panels are cIiscussed -which are not excIuded
from application of the relaxation method by the foregoing
considerations. The~- may be classified according to the
boundary conditions of the stringers into four groups.
Recommemlatiom for each group follow- with z fifth sub-
sect ion added cent aining suggestions for paneIs in which
transverse forces and displacements are considered.

[a) Panels with boundary conditions at both ends of
stringers specified in terms of force.—The following two
procedures are recommended for liquidating the residds on
a pand of this group:

First procedure:

1. Consider each striqzer isolated b~- cutting the sheet aud
the trarmerse reinforcing elements. Select the stringer for
whirh the algebraic sum of the external forces is the Iargest.
Displace the entire stringer as a rigid body (bIocli displace-
ment’) until this sum -i-anishes.

2. Balance one end joint of the stringer by displacing the
adjacent joint on the sume stringer.

:3. After step 2 is completed the eud joint is balancecl but
the joint that was moved is unbalanced. DispIace the third
joint on the same stringer until the second joint is balanced.

-1. Continue the procedure until the seconcl end joint is
mol-ed. In this last step both the end joint and the acljacent
one w-N be approximately baIanced at the same time since
the algebraic sum of all the forces acting upon the stringer
was zero after completion of step I and this equilibrium has
been disturbed only slightIy by the shear forces transmitted
by the sheet during the individmd operations.

5. Stringer 1 is now appro.xima tely baIancecI. Carry out
the same procec!ure n-ith the other stringers of the panel
successivel~-.

6. When a]l the stringers are appro.xirnately balanced,
return to the first stringer and balance it again by uncler-
tdcing steps 1 to 4. Repeat the procedure with the other
stri~gers until all the resicIuaI forces can be considered negli-
gible for engineering p~irposes.

Second procedure:

1. Ckmider ench stringer isoIated by cutting the sheet and
the transverse reinforcing eIements. Select the stringer for
which the algebraic sum of the external forces is the Iargest.
Displace the entire stringer ES a. rigid body (Mock displace-
ment) until this sum Tanishes.

2. Displace one end point of this stringer so as to balance
the residual thereon.

3. Displace by equaI amounts the adjacent joint on the
same stringer and the end joint which -was baIaneecI in step
2 so as to baIance this second joint. The equilibrium of the
end joint -wiUbe disturbed only by a smaIl amount clue to
shear in the sheet.

4. DispIace by equal amounts the third joint on the same
stringer and the two joints that were pIaeed in approxirnat e
Mance by the operation clescribed in step 3 so as to balance
this third joint.

5. C’ontinue this procedure untiI the joint next to the
midjoint of the stringer is balanced by equal displacements
of all the joints situated between it and the end joint fist.
dispIaced.

6. Repeat the process described in steps 2 to 5, starting
from the other encl joint of the stringer and continuing to
the mid joint from this direction. After this step is completed
this stringer -s-ill be in appro.xirnate balance, the only resid-
uaIs being those introduced by shear in the sheet.

7. Consider next the stringer on either side of the approxi-
mateI~ balanced stringer. Undertake a block dispIacemen~
so as to equilibrate externalI~ the str~~er under its residuaI
forces-

8. Start at one encI joint of this stringer and apply steps
2 to 6. This second str~~er ti be placed in approximate
baIance thereby, while the balance of the first stringer wiJ.I
be disturbed only through the shear in the sheet.

9. Either return- to the first bahmeed stringer or proceed
to the next str~mer on the other sicle. Each newly consid-
ered stringer is first externally equilibrated uncler the externaI
and residual forces by a bIock displacement. Then from
each free end the residuaIs are baIancwI by group displace-
ments iuvoItig equaI clisplacernents of aLIthe joints situated
between the one in question ancl the free end. Continue to
balance inditiduaI stringers until W are bahmeed.

The reIaxat ion tables for the paneI shown in figure 1, for
which tabIe I is the operations table, are usecl to demon-
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FtcrKs 1.—l?efiomed panel with conditions at bath ends sp@lWh termsoffmce.

strate the first and second procedures ancl are given as tables
2 and 3, respect i~eIy. It mill be noticed that this operations
tabIe considers the displacements of only the joints on the
Ieft haIf of the panel. The paneI is q-mrnetrical and is
sy-mro.etricalIy Ioaded. Therefore, the displacements in the
balancing process are undertaken symmetricaLI~ and only
those of the Ieft side joints need be comsiclered, those of the
right being correspondingIF equal. Since this panel has
only three bays aIong each axially loacled stringer, the
internal baIanc@~ process is undertaken from one end of
the stringer only.
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(b) Panels with boundary conditions at one end of stringers
specified in terms of force md at other in terms of displace-
ment ,—This type of probIem occursj for instance, when one
end of the panel is attached to a rigid body l~711icllis eit~ler
held fixed in its position or is displaced a given amount.
The recommended procedure for panels of this group is h
same as the second procedure for panels in case (a) with
two exceptions: (1) hTo bIoclc displacements are needed (or
possible) to equilibrate the stringers externally and (2) the
internal hdancing proces-s can be started only from & one
free end of each stringer.

The method is demonstrated on the panel shown in figure 2.
It is identical with the pane] used for case (a) with the excep-
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FIGURE 2.—ReWmed panel with conditions at one end specified in terms of force and at
the other in terms of displacements.

tion of the fixed lower ends of the verticrrl stringers. The
opera tions tabk is identical wi~h that of the previous panel
except that no block and no ON-and o~-disp~acements are ad-
missible. The relaxation table is given as tabIe 4.

(’c) Panels with boundary conditions at both ends of
stringer specified in terms of displacement,—Exp erience on
panels of this type indicates that, although no systematic
process of balancing the residuals can be recommended, the
direct rdaxaticm process is rapidly convergent. By starting
frcnn the midpoint joints on a stringer amd by balancing
successive joink ~oward the two fixed ends, the equilibrium
position can be approximated rapidIy. A further sugges-
tion regarding this type of panel is contained in the later
section ‘‘hTiles Tables.”

(d) Panels with irregularly specified boundary condi-
tions.—l?or such prrnels a combination of the methods
discussed under cases (a), (b), and (c) is recommenclecl. By
judicious use of Mock and group operations simiIar t.o those
of cases (a) and (b) rapid convergence of the relaxation
procedure will be obtained.

(e) Panels in which transverse displacements and forces
are consideredi—There are two general procedures for
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treating panels in which the transverse displrrcemmts finfd
forces, usually considered ncgligiblcj mw treatd. TJwsc are
described in the foIIowing paragraphs:

3

First procedure:
The procedure discussed under cmcs (a) and [I)j cnn be

applied to panels with cutouts. TILL’string~’rs arc approxi-
mately balanced in the directior~ of the major axiaI forws
by these procedures and then the residuals normal to this
direction are considered. The same st{’p-by-st ep op,~rations
can be applied in bahmcing transverse stifTem*rs under cllcw
transverse axial forces. The process of first Lalsrnring tl~[’
stringers in one direction} then halanrimg t]lc stiflencrs in
the normal direction, and then returning to the originally
balanced stringers will be quite rapi(lly converg{’rlt for
paneIs with sheet of low shearing rigidity.
Second proceclure:

For panek with cutouts requiring considmation of the
transverse forces another procmlure, which is demonstrrrt(’(1
in reference 4, can be used. Tl~[’ pam’1 is first consi(drrml to
htive continuous sheet and stringers, as if the cutout did not
exist, and the displacements Ior equilibrium of this p~nt~l
unclcr the external loads arc determined by the usual nlrd!-
ods. These displacements are th(m applied as a first. approxi- ~
mation to the distorted shape of the acturrl pafwl ~vith cut-
outs. DispIacen~ents leading to H closer approximation nrr
then underhken. This proccdurc is foun(l to be rmso~:abIy
successful for the cases invest igtit ed in refercnre 4.

MATRIX-CALCLILUS JIETHOSI

The operations table togethc’r with the cxhIrnal furccs mm
be considered as a system of Iimwr e.qllilibrium cquatiofis
with the magnitudes of the displ~cemt’nts as the {Inknowm
Thmefore, the methods of matrix calculus can bc tipI~lir(d to
find the solution of tlris syst-wn by clircct nuttlicnmtical
means. The method described in reference 9 is recom-
mended since a check on the calculations is maintaimd rrt
each step in the process of solution.

Matrix methods of solution lNIVC se-mral a(lvfintagm.
After the operations table is established by trained mgineer-
ing p~rsonnel, the solution can bc obtained by conlputi]jg
personnel familiar with the matrix-calculus nwthod. Un(lrr
some conditions this economic advant tigc may bc import wl t.
For reinforced pmlels with sheet of high sll(wring rj$(li(y
the relaxation procedures are slowly convergent cvcrl wILeIi

the recommendations given in the preceding sectio]~ nrc olJ-
served. The matrix-calculus method is not affected by tlik
physical characteristic of the struct.ur?.

When the number of equations is grm[w tha]] 30 or 40,
the work of computation lwcomes inconvmicw (IY hlrgr.
Therefore, for panels having a sheet. co vcring of snmll sh~’ar-
ing rigiclity relaxation methods arc rccornmrn(iud. Whcll
the sh~et. covering is very rigid in shear tlw matrix mctlI(Ni
is likely to be more advantageous lwcausc the routine opera-
tions of the matrix rncthod can aI\~ays be carried ollb if
enough time is allowed.

The equations of equilibrium for the pM~eI shown ill fi&IIrc

1 are given by table 1 and are prrscntd m follows to iHus-
trate bow the operations table and the W.crnai forces mn
be considered as a system of equilibrium equations:
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—55.2rB+2.00?E+ 51.2rF =0

2.00 FB—101.6CE+4.00 ~=+46.8~J+2.00L*K =0

51.2 CB+4.00L+E—110.4rF+2.00PJ+51.2r= =0

46.8/.’E+OO~F~10106CJ+4+OOLOK’K 1

+46. SL*.T+2.00L30=0

I

(1Z.00rE+51.2~F+4 .00rJ—110.h~-K

+2.00 L!,.+51.2CO=0

46.8r.r+2.00t*= -50.8rx

+2.00 c0+60X10~=0

~.ooc=+51.2r=+2 .00L’.\7

—55.2L%O+60X10’=0 1

In considering the operations table and the ext errd forces
as a system of equilibrium equations, care must be taken to
restrain enough joints so that the position of the panel as a
rigid body is Exed. h the present case DAand CD are as-
sumed to be zero, and since only displacements in the y-
direction are considered in this probIem, this restraint is
sufficient.

(2RO WIXG.Lii7T .METHOD

For reinforced panels with sheet of high shearing rigidity
or with a Iarge number of bays in the direction of the axiaI
forces, the relaxation procedure is not rapidly convergent.
In such problems either the matri~-calculus or the grow-ing-
unit method is recommended. The latter can be appLiecl
only to panels the boundary conditions of which are specified
in terms of force at least at one end of the stringers.

The growing-unit method appbed to reinforced paneIs is
as follows: The joint at the free end of an arbitrarily selected
unbalanced stringer, cdecl hereinafter the principal joint
and the principal stringer, respectively, k displaced so as to
liquidate the residual on this joint. At the same time the
joints IUti]g on adjacent paralkl stringers and the same
trans-rerse stiffener are dispIaced so that the residuals that
would be otherwise introduced by shear from the balancing
of the principal joint as welI as any external forces applied
to these joints are Iikm-ise liquidated. In the second opera-
t iou the next joint on the principal stringer is reIaxed whiIe
the preciously baItinced joints on the fit transverse stiffener
a~cI the joints on the second transverse stiffener are kept in
baIance by suitabIe displacements. .Ifter this second opera-
tion no residuak remain at the joints of the first two trans-
verse stiffeners. .ifter a suf15cient. number of repetitions of
the procedure aII residuals v-ill be confined to reaction points
or will be liquiclatwl; the panel -wiI1then be in equilibrium.

This procedure is demonstrated on the pwd showm in
figure ~. T]le physical properties of the panel are the same
as those of the pretiody discussed paneIs e~cept for the
additional bay in the direction of the a.tial forces. -i$-ctually
the convergence of the relaxation method for this panel
would be quite rapid, but. for convenience the groming-unit
method, applicable when this corrrergence is slow, is clemon-
strated thereon. Table 5 is the operations table for this
panel and contains not only the inclitiduaI operations but
also the group operations of the growing--unit method.
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FIGC%E 3.—Reinforced panel with 12 bays.

Table 6 is the relaxation table in mhich these group opera-
tions are used.

The group oper~tions given in table 5 require some ex-
planation. In order to avoid introducing a Y.-residual
-when joint A is relaxed by application of operation (1), a
r~-displacement. is applied, the magnitude of which can be
calculated from the equation

—55.2cB+2.00=0 (2)

Thus operation (9) is I’B= (2/55.2!) =0.0362 and (10) is a
group opera tion equal to the sum of operations (1) and (9),
which Liquidates the residual Y~ without introducing a
YB-unbaIance.

After operation (10) is used, unbalances efist at joints
E and F, that is, on the second tranwerse stiffener. ln
order to baIance these tithout disturbing the recently
established balance at A and B, t%o group operations are
de-reloped: One permitting the balancing of E and one per-
mitt~~ the bakmcing of F. The ma=aitudes of r~ and r~
required to maintain the balance of A and B when a displace-
ment of r== 1 is undertaken are given by the following
equatio~~:

—50.8cA+2.00tB+ 46.S=(l

1
(3)

2.00 PA—55.2CB+2.00=13

These are satisfied by r4=0.921, operation (11), and r~=
0.0695, operation (12]. Operation (13) is therefore estab-
lished as &e sum of operations (3), (11), and (12). The
magnitudes of rd ancl r~ required to maintain the balanre of
A and B Then a displacement of r== 1 is undertaken are
given by the follovz@ equations:

—50.scA+-2.00rB +2.oo=o

}
(4)

Z(IOr~—~5.2rB+51 .2=0
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These are satisfied by Li=0,0758, operation (14), and t’~=
0.923, operation (15). Operation (16) is the sum of opera-
tions (4), (14), and (15). Since group ope.mtions (13) and
(16) both introduce 17E- and I’F-forces, the magnitudes x,3
and ~lbof these groups required to liquidate the —11l–pound
and —9–pound residuals at E and F, respectively, are given
by the foIIowing equations:

–58.3x,~+9.4x,B- 111=0

1
(5)

9.4z1~—62.6.zlo- 9=0

Thus xl,= – 1.975 and X,o= –0.444. Joints E and F are
balanced without, disturbing the balance of A a.ncI B by the
use of these muItiples of operations (13) and (16).

In eliminating the residuals at joints J and K multiples of
operations (13) and (16) are appIied since these operations
permit disphwement.s of E and F to be undertaken whiIe the
balance at A and B is left undisturbed. Wlen joint .J is
displaced a unit amount, multiples of operations (13) and
(16), defined by the following equations, are used so that,
the bakmce at A, B, E, and F is maintained:

–58.3x,~+9.4x,G+ 46.8=0

I
(6)

9.4xl~– 62.6z,~+2.00=0

The solution to these equations is x,,= O.828, operation (17),
and z16=0.158j operation (18). operation (19) is the sum
of operations (5), (17), and (18).

In a similar manmer all the individual and group displace-
ments described in table 4 are found. IL may be mentioned
that in the present example no shearing stresses were set
up in the middk bays because of the symmetry of structure
and loading. The original operations table was alreacly
established in a manner which complied with these require-
ments of symmetry. When such is not the case or when
there is a greater number of stringers in the panel, displace-
ments of principal stringer joints will, in general, cause
residuals to appear at more joints so thst three or more,
rather than two, simuItan~ous equations have to be soIved
at etich step,

NILES TABLES

In reference 10, Niles demonstrates for the soIution of rein-
forced-pane] problems a methocl which essentially parallels
the previously described relaxation method. The NTiles
medlocl is a procedure for balancing a stringer by the use of
tables which give the displacements of each joint on the
stringer requirecI to liquidate ~ residual on a given joint of
the stringer. The tables are worlied out for various end
conditions and sheet shearing rigiclities.

Since reference 10 contains tables onIy for sheet of rela-
tively low shearing rigidity, the NTiIesmethod is limited in
this respect in the same way as the relaxation method.
However, the twbles can be employed on stringers with the
boundary conc~it.ions at both ends specified in terms of dis-
placement; for such problems no step-by-step routine reltixa-
tion method has bc.en recommended. Also by use of the
tables exact balance of a stringer is gained after a single
dispIacemenL of each joint, whereas in the relaxation method,

because of the shear, small unl}tih~nms remain afL(’r each
joint is moved,

On the other hund, the relaxation mc[llod can be u[)pli{’tl
to stringers with irregularity spuced joints for which 110tal)lw.
were set up by Mles.

Since in reference 10 severrd exampIw of the procedure arc
givenl no application of thu Niles method is shown hrrein,

ELECTIUCANALOGUE

Another convenient. metllocl of solving the problum of force
distribution in a reinforced prrnel is that. in which tl~o voltag\Is
are measured in an electric net~vork which is so construc Lcd
as to make it a complete analogue of the rri[lforcc(l parlel,
Wen suitable electric equipmmlt is available, al] armlogous
network can be hooked up and txstwl with v(Iry lit[l{’ work,
A. particularly attractive proprrty of tll(’ stress-nnolysis
procedure by means of electric mmsllren~en Lis the vase wi[]i
which the effec:t. upon the stress distribution 0[ ch}tI}gcs i~l
ioading and in dim~’nsiom of the various structural rl{~I]~eI~Ls
of the reinforced pare’] can bc investigated. This 1][’rmi(s
the deveIopmenL of an efllcient design with little anaIy~ic
work.

The anaIog-y between the forces trmlsmittwl tl]mugl~ (hc
cliftmeni shwciural elements of the rcinforcml prrnrl an[l tllc
currents flowing through Lhe various branch{’s of the (Iirw i-
current network can be mplained with (]lr ttid of figures 4
and 5. The problem investigated is the so-crrlicd “onc-
dimensiona] shear lag. ” IL is assumed [hat LIWtransverse
stiffeners are infinitdy rigid so tlia L the vrrtirrd, or longit-
udinal, dispIacmncnts rJ aIorlc n~cd to be detcrminwl, TII(I
portiori of the shecL covering considered cffeclive in trn.siol~
or compression is added to the cross-scctiona I .arca of earn
stringer ancl the panels of sheet. are assumed to mrry Sh(’ar
stresses only. .4 consequence of these assumptions is that.
the shearing stress must, be comtant in each panel.

Y
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I?IGURE4.–ForcQs transmitted through structural elements O(
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Fr~”,CRE 5.—Cumnti flowing through branches of

dir+ct+lurrer.t network analqous to reinforced

panel of figure 4.

The analogous direct-current network contains as many
Limling posts as the number of joints in the reinforced panel.
.lc{jacent binding posts are connected by conductors having
prescribd resistances R. Predeterminecl eIectric currents 1,
which correspond to the forces F applied to joints A and B
of the reinforced panel, are introduced into the network ak
points A and B.

It is now recalled that in the relaxation method the joints

of tlw panel are first assumed to be rigiclly fixed to a rigid
wail behind the panel. The externaI loads are first applied
to these rigid pegs, referrecl to as the “constraints.” The
paneI is obviously in equilibrium under these concIitions but
this arti6eiaI equilibrium is entirely difTerent from that pre-
vailing in the actual panel, which is not attached to any rigid
wdI. The actual state of equilibrium is approached by the
step-by-step procedure of the relaxation method, in each
step of which one singIe constraint is removed and the cor-
responding joint is displaced until it reaches its equilibrium
position in the system in Khich aII the other joints are still
rigidly fked.

For instance n-heu joint 1 of the reinforced paneI is me-red
through a distance u in the positive direction, this displace-
ment imposes forces upon all the adjacent joints numbered
from 2 to 9. Three typical forces are given by the equations:

(q

(9)

where

.Fal,F91, F51forces acting upon joints 8, 9, and 6, respeeti~e-
Iy, because of displacement of joint 1

E modulus of e~asticity of stringer
Q shear moduIus of sheet
f thickness of sheet
u displacement of joint 1

In the czse of the analogous network it can be assumed
that the potentiaI of each binding post is zero at the outset.
Lf there is no potential c{tierence, no current flows between
the posts. lt can be imagined that the currents introduced
at points ). and B are taken out of the system by means of
some imaginary concluctors. However, the actual distribu-
tion of currents in the network prevails without the aid of
the imaginary coBcIuctors. This actuaI state can be
approached aIso by means of a step-by-step> approfimation-
type cab.dation. For imtance it can be assumed first that
the potentiaI of binding post 1 is ele-rated to the ~alue V.
After this change there is a, potential clifference between
binding posts 1 and 3 and consequently a current w-il.Iflow
from post 1 to post 8. The magnitude of this current cam
be calculated from the equation

1,,= J’~Rg,= CS,T” (10)

where R81is the resistance and C’~l= l/R~l is the conductance
of the conductor between posts 1 and S. Similarly the cur-
rent. flowing from post 1 to posi 9 is

Ig, =c,,T” (11)

The current flowing from post 1 to post 6 is

16,= C6,T” (lx)

Comparison of equations (7) to (9) with equations (10) to
(IZ] re~eals an ~na]o~v betll-een the @ects of z displacement

o of joini I ancI the raising of the ~oltage of binding post 1
by an amount ~“. The current caused by the change in
potentiaI corresponds to the force caused by the displace-
ment, protided that the conductance of each conductor is
made equaI to the influence coefficient in the corresponding
force equation. Efence

~ _ E.4 Gbt
S1 b ~a (13)

c,, =QJf (15)

In the relaxation procedure the equdibrium state is
approached by clisplacing indh-iduaI1y the joints and sum-
ming the effects of each displacement. h exactly the same
-may the actual distribution of the currents in the network
can be determined by cha.ngicig incIitidualIy the voItages of
each binding post and summing the effects of these chmges.
In the reinforced paneI equilibrium is obtained when at each
joint the sum of the external forces and of all the internal
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forces caused by ihe displacements is zero. The forces are
considered positive if they are directed as the positive dis-
placements. In the form of an equation,

xl?’= o (16)

An analogous equation in the direct-current network is
furnished by Kirchhofl’s first Iaw, according to which the
sum of the currents flowing into any binding post must be
zero. Currents in the direction of any binding post are
considered as positive. In the form of an equation,

EI= () (17)

Comparison of the last two equations reveals that the
c.ondit ions of equilibrium for the reinforced paneI and Kirch-
hoff’s first law in the case of the direct-current network
complete the analogy of the two systems considered. It is
possible therefore to construct an electric network with the
same configuration of binding posts as that of the joints of
the reinforced panel. The conductance of the conductors
connecting the binding posts must be so chosen as to malie
them proportional to the corresponding influence coefficients
in the operations table of the reinforced panel. If then cur-
rents are introduced at the binding posts which correspond
to the joints at which external loads are applied, the distri-
bution of the currents in the network will be the same as the
distribution of the forces between the various structural
elements of the reinforced panel.

In the firsL applications of the relaxation process to rein-
forced panels each joint was displaced until equilibrium was
established. It was noted in the section dealing with the
solution of the problem by matrix methods that this pro-
cedure permitted rigid body displacements of the structure.
Rigid body displacements can be eliminated if one or more
joints are considered as rigidIy fixed. In the case of the
reinforced panel of figure 4 the degree of freedom of motion
of each joint is one, because the problem is considered as a
one-dimensional shear lag problem. Consequent,Iy it sufikes
to fix one singIe joint so thaL it is prevented from disp~acing
vertically. However, if joint C, for instance, is fixed, the
symmetry of the structure and loading requires the simul-
taneous fixation of joint D.

In the analogous network binding posts C and D are given
predetermined values of the potentials by connecting them
to the ground. lt is customary to attribute the vaIue zero
to the potential of the ground. Consequently I’c and ~’~
are zero just as in the reinforced panel Vcand v~ are zero.

lt wiII be noticed that in figure 4 the direction of .F at
joints A and B is upward, whereas the direction of 1 at bind-
ing posts A and B in figure 5 is downward. This corresponds
to the difference in the sign convention in the two systems.
In Lhe panel upward forces were considered positive and in
the network currents flowing Lowarcl the binding posts were
given the positive sign. The directions of the forces and the
currents at points C ancl D are the same. This again corre-
sponds to the correct. signs r~cluirecl by the sign convention
since the downward forces at these points are negative just
as the currents which flow away from the. binding posts are
negative. Hence the reinforced panel is under the action of
ext ernaI tensile forces, whereas through the network currents
are floiring in the clownward direction.

In the case under discussion it is easy wlou~li to introdu~~

the two equal currents at posts A and B and to regulate
their magnitude by means of an m]justable rheostat. llow-
ever, when there are. a number of impressed currrnts of ditTer-
ent, magnitude stipulatwlj their adj ustmcnt may become n
lengthy trial-and-error procedure. In such cases it. is ad-
vantageous to employ a number of commercially availaMc
electronic devices, known as constant-current gcnern tors,
which have the property of maintaining n constant currcut
independently of the properties of the ncLwork.

When the construction of the network is completed m(t

the required external currents are introduced, tl~c deflection of
any joini of the reinforced panel can be obtained by memur-
ing the potenLiaI of the corresponding post in t]lc nctlvork
with respect to the ground. This quant,ity multiplied by the
conversion factor is the relative displacement. of tllc corre-
sponding joint of the reinforced pane] with rcspret to the
fixed points C and B. In most cases, however, the displace-
ment quantities are of interest. only indirectly and the’ mail]
quantities sought tire the forces in the stringers and thr shrar
stresses in the sheet. These quantities can be obtained in a
simple manner by multiplying potential diffwcnccs by the
appropriate conductance and by the conversion factor.

For instance when the force in stringer segmrnL 1-8 is
sought, the voltage drop between posts 1 and 8 mus( bc
measured and mu~tiplied by the conductuncc C’~laml the.
conversion fact or. This is a consequence of equations (7)
and (10). Similarly when tho shear stress in pall[’1 I fit3tl is
required, the voltage drops in conductors 1–6 an(i 8–9 ha~e
to be measured. From figure 4 the a,veragc displa,mmwnt of
stringer segment 6–9 is (v~+ uJ/2 and the average clisplnrr-
ment of stringer segment. 1–8 is (U1+VJ/2. The differcnec of
these two average displacements multip]ie.d l~y Gtb/a is tho
shear force transmitted from th~’ panel to stril]ger segment
6–9, ConscquentIy the sum of the displncrmrnL (IifTc’rcnrcs
vd—vI and ~l~—.?)smultiplied by tllo influrncc coefirient 1-6
is the shear force sought. In othur words the sum of thu
voltage drops from post 1 to posL 6 and from post 8 to post ~
multiplied by the conductance (’6, and the c.onversioll far.ttor
is the shear force in question. This slwar force divi[dcd by
the length fi gives the avet’age shear flow in panrI 1&39 and
this shear flow divided b37 the thickness of LIMsIlti~~t.is the
average shear stress.

With the cooperation of the Department of Illwtri(cal
Engineering a network was constructed aL (1w l)oly[uchnic.
Institute of Brooklyn which was thu analogur of thl. rein-
forced panel investigated earlier at PIBAL bet]] vxprrimcnl-
ally and by relaxation methods. Tlw results of these
investigs.tions are described in refcrcnre 3, rrh[l col~stan(
currents were introduced by mrans of consiar~t-cu rrvn L
generators. ln the electrical system tho unit of th~!poLelltinl
was chosen as 1 volt tincl that of (ho currmL as 100 nlilli-
amperes. Then [he unit of the con(iurtance ha{l to be a
miIlimho and t.htit of the resistance, a kiIolun. 111 the
rncchanical systc~.n the unit disphwement was 10-4 inch and
the unit forc~, 1 pound. Conscqumtly in this prolhm [Iw
voltage. clifferenccs had to l-w multiplied by thr conversion
factor 10-4 inch per volt in order to obtain (Iis])ltlc[:rllcllls.
The factor converting currents into forces was 10 poun(ds p{~r
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ampere. The resuIts of the measurements were in excelIent
a=~eement Ttith the results quoted in reference 3.

Similar experiments were carried out by A’ew-tcmcind Engle
at the Cwrtiss-Wri@t Corpor~tio~, .Airplane Divisionl in
St. Louis and are clescribed in two reports listed m references
11 and 12. Newton’s approach to the probIem is fundament-
ally the same as the argument given herein. Efowerer, his
electric network is slightly simpler since it does not contain
the conductors arrangecI diagonally in the system shown in
figure 5. The network of figure 5 -was chosen in this report
in preference to h~ew-ton’s simpler network since by this
presentation the identity of the comluctances of the network
and the influence coefficitmts used in the other part of this
report could be established.

It shoukl be ment ionec{ that in many cases it is p~ssib~e
to construrt a duaI type of network in which the currents
correspond to the displacements of the joints of the rein-
forced panel and the potentiaI clifferertces correspond to the
forces in the stringers and in the sheet coveri~~ of the
panek.. In this type of network the external Ioads can be
introduced more easilcy as impressed potentiaI clifferences.
However. the network described herein is more ad=i-antageous
since it can alwa.vs be constructed clirectly from the geometry
of the reinforced panel.

The usefulness of the anaIogue with the direct-current
network breaks down when the infiuence coefficient in equa-
tion (7) becomes negative. In such a case the conductance

and consequent> the resistance of the corresponding branch
(,f the network should be negati~e; this is obviously impos-
sible. Efon-e~er, the sit~mtion can be usuaUy remeclied in
the case of one-dimensional shear lag problems. The fuda-
ment aI assumptions of the probIem are not rkangecl if a
number of additional horizon Ed bracing eIements are intro-
duced in the paneI since a!l of them are assumed to be
iwfinit ely rigid. lf, howe-rer, the panel length 6 is recluced
to one-half its original ~alue, then the negati~e term in the
influence coefficient appearing in equation (7) is halved ancl
the positive term is doubIecl. In most cases this -millsuf%ce
to change the sign of the influence coefficient. ‘iThen such
k not the case cIistance 6 can be reduced in any other s,uita-
ble ratio.

*Negative Muence coefficients can be realized if the anal-
ogous n~tJvork is fed by an a]t~rnating c~re~t. The
quantity corresponding in an alternating-current circuib to

the resistance of the direct-current circuit is the impeclance.
In the impedance the inductance retards the phase of the
current and the capacita~ce advances it so that the two
have opposite effects. If one is clesigmited as positive, the
other is negative. How-ever, no inductance is entireIy free
of resistance and for this reason the accuracy of a compli-
(:ated alternating-current network may not be s~cient for
the solution of some of the probIems encountered in practice.

The use of the electric anaIogue for solution of shear lag
problems is recommended -when severaI similar panels with
many Ioading conc[itions are to be analyzed. For such a
case the construction of the analogous network, the -raria-
t ion of the loading by mr-yin.g the impressed currents, and
the determination of the potentials at. the bindi~g posts
WOUMbe simpler than any analytic method of soIution.

$?~::~-sl—]s

REINFORCED-P +JIEL AND FUSELAGE-RLNG PROBLEMS
~57

FUSELAGE RIA”GS

IX_TRODUCTIOX

In reference 5 numericaI procedures for the determination
of the bending-moment distributio~ in fuselage rin.bm are
de-relopeil and demonstrated on several simple ancl internally
braced fuselage rings. The n~~mber of redundant internal
brcicing elements increases Litde the work involved in estab-
lishing the operations table for the ring ancl affects not at all
the amount of numericaI w-ork in the soIution of the opera-
tions table. This nonsensiti-rity to the number of redund-
ance constitutes the aclrantzge of this method in tbe analy-
sis of fuselage rina~s.

The methods suggested for the soIu[ion of the system of
equations represented by the operations tabIe and the
external forces are three: Relaxation, matrix-calcuIus, ~nd
growing-unit. The Iat t er tw-o may be considered as direet
mathematical methods and as in reiriforced-pand probIems
require onIy computing pt’rsorineI. For the anaI@s of
isolated fuseIage rings of compIex shape the use of these
clirect metkmcls is recommended since an accurate solution
is assured in a reasonable length of time, whereas the relaxa-
tion method may not leacI to sufEeientIy accurate results
e-ien after considerable ef?iort lw been expended. However,
for simpIy shaped rings and for problems of stress distribu-
tion in sheet, stringer, ancl ring combinations, application of
the relaxation method to fuselage rings is advantageous.
For this reason the reIaxat ion method for fuselage-ring
problems is presented and new-, more rapifiF convergent
procedures are de~eloped.

It has not been found possible to make concrete recom-
mendations for relaxation procedures which are rapiclly con-
~ergent for all t-.ypes of ring and loading. Ffovre_rer, satis-
factory procedures for se-reraI cListinct types of ring and
loading m-e demonstr~ted ancl e.xpIained in some detaiI. It
is felt thzt consideration of these exunpIes will suggest. to the
analyst means of soltig more rapidIy other ring ancI cylinder
probIems which are not eficientIy attacked by direct mathe-
matical means. The procedures, which in-rolve essentially
appropriate combined operations, are dernonstrateci OQ two
rings soI-red in reference 5 by the usual relaxation methods
and on a new internality bmced ring. .4pplication of the
growing-unit and matrix-eaIcuhls methods to the latter
probIem is made to demonstrate these methods and to
verify the rewdts of the relaxation procedure.

TORSION’ OF A CIRCGLAR RING

k reference 5 the bending-moment clist ribution for a
simpIe circular ring with ant isymetric loading com~isting
of concentrated forces ancl distributed ancl constant shear
flow is determined by application of numerical methods.
The chmensions ancI loading for this ring are show-n in figure
6 and the operations table is given as tabIe 7. Reltixation
methods are applied to the solution of this ring problem in
reference 5. B-y a process of increasing all the residuals in
such a proportion that one key operation would liquidate
them all to within the desired degree of accuracy, the resid-
uaIs were reducecI to within 2 percent of the maximum
applied Ioad in 12 operations.
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FIGURE 6,—Circular ring with antisymmetrio loads.

In thepresentrepovt combined operations which increase
the rwte of convergence are clemonstra.ted. Tangential ancl
angular displacements of A and C balance these points in
four operations and place all remaining residuals afi B.
Since no tangential forces mist tit A and C~the force. residuaI
at B must b~ vertical and the moment residual, equal to Lhe
couple of the verticaI forces. Suppose the residual moment
at B is liquidated by a rotation of that. joint while the Mance
of A ancI C is preserved by suitable displacements of A arid C.
Then from equilibrium consiclerat ions the resiclual forces. at
B must also be liquidatecl. Thus in five operations balance
will bc obtainccl. This procedure k used and proves to be
satisfactory.

ln order to balance the residuals at A two combined
operations. are cle-relopecl. The first combines a unit angular
displacement w~ with a tangential displacement u* such that
no tangential force at A results when the two individual
opcrat ions are simultaneously applied. The forces ancl
moments introduced by the individual operations as well as
by the combination arc given in the folIowing tabIe:

‘\ ‘~~=~
\ IV* T. .kTi? RE TB NC Tc

Operation
\1— ———— —. —— . —

u~~=lO-$ radian . . . . . . . . . . —281. 95 –49, 079 –29, 966 –4. 733

~

64.675 0 0
— — . —

UA= ‘&938 f8x1f)-8 in... - 46.060 49.079 –s5, 696 21.060 –48. 347 0 0

Z+ Operation A= I--.... –235, 89 -w.fJ32 =~= ~ ~
— —

,0

The second operation combines a uniL tangential displace-
ment UA with an angular rotation WA such that at A no
moment arises from the combined o~eration. ‘The forces
and moments introduced by the individual operations as
well as by the combined operation are given iil the fo]]owing
lable:

\\’~;&’g

\
.NA TA NB ~B TB ArC TC

Operation
— - — .— — —

tfA=~f)-8i~.......... –49. 079 —52. 2$0 64.675 —22. 441 51.516 0 0
. — — !

WA= :0.17407 x10-3
ra(ilan -------------- 49.079 8.5432 5.2162 0.82387 –Ii. 258 0 0

— —— ——
Z+Operation B=l... o –42. 753 69.891 –21. 617 40.258 0 0

- ,. 1

Thus by using the necessary amounts of tllc cunlbi]lwl
operations A and B joint A is balanced in tww op[’r~~Lions.
Two simiIar operations arc fo[ln{l for joint C w1(l arc givctl
as follows without explanation:

qq;k ;i g~
UC= —4.85i0 X10-~ in. O 0 –32. 192

— —_.——

Z+ Operation C= I..– O 0 ]GzE6-- ‘-—E.2!185
1 :“- ~w

&3wJ5 -13031

\

Fores and
moments

NA TA

Opwation

uc=lO-~ in- . . . . . . . . .
01 0

Wc= :0.00389S7M0-:

L
ra{llan------.----... 00

Z+ Operation D= I.. ~T~

4 ~ L,VB RB TB NC TC

6.&32 O.52i — o.owl ~ 4.322
——

-0.55339–o.0s752 –o.03s8 1.5% 0.01547
—.— - - - —
& 0723 / o.43sS 0.0327 u ~-o.wm

In order to btilance the residuals at, B without disturbing the
balance at A and C obtained by use of opwmtions A tu D,
combined operations involving tangy ntinl and Olkguhlr
clisplac~rnents of A and C and a unit rohilion of B arc clcvcl-
oped. If joint A is to remain in lmhcc when Q rohtioti
of B is undertaken, join~ A musl bc rotated and displnmd
in such a manner that the tangential forco nml the moment
introduced at A by this rotation of B arc cquilibrakd. S&cc
the angu]ar cIispIacemen L int rodures tangentid forms nt
A and the tmlgeuLiaI displacement. intrcxluccs moments, two
simultaneous equations must bc solved for the unkllolvn
tangential and anguIar clisplacemt’n ts. The cqlln[ions for
A are:

–2S1.95W.–49.079 U.–25N3X3X 10-3=01
–49.079wA–52.296 uA+64.675X10-3=0] (18)

Tb.e solution to these equations is u’.,4= – 0.3t3434 x 10%
radian and u*= 1.5974 X 10-3 inch. ~ uni L rotation of B
and tangential and angukw displwcments of C arc combi.md
in equations (19) so that the tangcntia] force an(I mmnmL
introduced at C by the combined operations nrc zero.

—157,s99u)~—l .50:3uc+56.5117xlo-3=o
—1.563WC–0.322U. +6.632 X10-3-=0 }

(19)

The solution to these equations is WC=0.16180X 10-3 rn(dian
and aC=19.811X10–3 inch.

If the forces and moments intro(ducccl by tile three sets of
displacements (uniL rotation of B, ths tangential and nnguhlr
displacements of A, and the tangcmtiaI nnd tingulnr (IispIn(m-
ments of C) are combined, a combined opcmtion is ob~aincd
such that. only forces nnd moments at B and rmli~l forces
at A and C are introduced, These htter forces fire of no
interest in the re~axation proceduro since tlloy arr cqui-
librat ed automat ically by the oth~’r half of the ring. The
combined operation from these three sets of displaccmrnts is
given in the folIowing table:
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t &B=,l)-zr-‘lmn.. ........-...[ -29.%0

t tc~=-UW3X10_~ rwlim . . . . . . ...1 U?S.37

, =----Uk lfl, Jxlo-3rn. . . . . . . . . . . . . .
t--

–% m
I lL’c=o.16150x10-~EXmn. .. . . .. . . , 0
~ UC=19.SIIXIIN II.. ............. 0

I
Z+ Opwxion E= I . . . . . . . . . . . . . . a

I

z-a -,3,.s4,

—118.86.. W 517

4
-s353s MS. 31

0 9.143$

II 131.30

a –134.49

The relaxation tabIe using these five combined operations,
A to E, is given as table S. The btilancing process Was
carried out on R slide rule and after five operations all the
residuals were reduced to neghgible quantities. From the
magnitudes of these group operations the total inditiduaI
displacements of A, B, am-l C can be found ancl the. unknomm
radiaI forces at A and C calculated.

The procedure just described involves essentially the
de-dopment of group operations so that full acI-rantage of
the s-yrnmetry properties of the ring may be realized. This
method is appficcible to other rings. The internality braced
circular ring subjected to antis-pmnetric Ioads ancl analyzed
in reference 5 can be treated in the same ray as t~ simple
ring. If these rings had been symmetricaII-y loaded, the
force residuaIs at B, after A and C had been bakmcecl by
simpIe radial di<placeme~ts, w-ould have a horizontal
redtant. By combining radiaI and tangential displace-
ments of A and C such that the resuItant force introduced at
B is horizontal and such that A and C remain in balance, the
horizontal resuItant at B could be liquidated by application
of such a combined operation. The moment residual at B
is not necessarily eliminated when the force resiclual at B is
balanced. Joint B must be rotated while A and C are dis-
pIaced ~adialiy so that the moment at B is licluiclated and
joints A tind C are kept in balance. lf the process of liqui-
dating first the resic~ual force ancl then the moment. at- B,
preserving in each operation the baIance at A and C, is not
rapidly con-iergent, two equations for the equilibrium of B
can be established and sol-recI for the requirecI amounts of the
combined operations.

Thus the foregoing procedures for both the symmetrical
and antispmetrical loading can be applied to any r&~
singIy symmetrical with ord.y one joint between the center
Iine of symmetry joirts. It may, therefore, be advantageous
irI some ring probIems to combine se-re~al bars, as in the
method of the growing unit, such that onIy one joint be-
tween the boundary joints has independent degrees of
freedom. Ttis will permit use of the foregoing procedure.

Suf?iicient accuracy for most engineerbg pnrposes can be
obtainecl in the computations of this procedure by the use of
a slide rde throughout. _Mthough the combined operations
show-n herein were obtained b=~ the use of a computing
machine carrying fi-re significant figures, the procedure was

RB

31.443
1.81$1

–M.847 ‘2”57lQ--
S2. 2gz I u

L 0730 —25 5!s

I. 3s70 I –30.w.

Tc

6.W

o

0
—
–o.2WQ

–6. 37S1

o

first demonstrated with the use of a sIide rule for all calcula-
tions. The results of the two sets of caIcuIatkms am in

good agreement., thus indicating the sficieney of slide-rule

accuracy.
EGG-S=~PEDRISG

Fig~e ~ shows the &rnensions of, and loading OH, a~ring
which is analyzed in refererice 5. The operations table for
this ring is given as table 9. h this ring there are two
points B and C between the center hue of symmetry points
A and D. By making the clegrees of freedom of either
point B or C dependent on the other and on the adjacent
center line of the symmetry point, one point with kdepenclen~
degrees of freedom is established between A and D and the
method discussed pretiousIy can be used.

/
/

\

r ‘>
E

c/-
-<”-~ .---- )

D

b
.500lb

Fmcm 7.—Egg-shap@l ring with symmetric 10Z3S.
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However, in order to demonstrate the simplicity and
efl~ctiwmess of group operations} another approtich is usec{.
The center lines of symmetry points A and D are bahmced by
simple mdicd displacements of A and B. The. midpoint of
btir BC is assumed restrained tangentially so that only equal
cmcl opposite tangential displacements of B and C are uncler-
taken. Because of the large eskmsiona.1 stiffness of bar BC
as compared with the bending rigidity of the circular seg-
ments ancl because the ring is almost symmetrical about a,
horizonta~ axis, such clisplacements of B ancl C liquidate ap-
proximately equal and opposite tangential rcsidua~ forces at
B and C, such as those which will be obtained ah these points
when th~ residuals associated with the other degrees of free-
clom are small.

If the bahmce at. A and D is preserved by appropriate com-
bin~tions of the radial displaccmcnk of A ancl D with the
rrquired clisplacemenk of B and C and if the tangential resid-
uaIs at B and C are not considered unti~ the foregoing opcv”a-
tion wiII Iiquidate them both, main attention is focused on
the radial force cmcl moment residuals at B and C. ln order
to Mance these, no specific method of convergence is used
but the state of the residuals after each step is considered
before the next operation is selected. In this problem of
egg-shaped rings and many other rings and in the complete
cyIinder problems this approtich, utilizing physical proper-
ties of the system and eliminating or reclucing extraneous
forces ancl moments at each step in the relaxation process,
may be the most satisfactory method of solution.

Table 10 is the relaxation table for the ring in question.
The first two operations involve only radial displacements
which balance the 500-pound forces at A and D, The largest
residual then is the radiaI force of 451 pounds at C. If poin~
C is displaced raciially so as to balance this residual, a large
moment ancI a large radial force me introduced a,t B. In
order to reduce these extraneous forces and moments and
to keep joints A and D balanced} radial displacements of A,
B, znd D and a rotation of B are combined as shown by the
following opera tions:

–3.:34S33V~+S.92216WB–2 .69614PB=0

8.922160~-327,866 w,+ll.4697v, +8.10267X10-4=0

—2.61J614vA+ll.4697wB-4.00991 uB+0.66158x10=d=0

1

(20)

–12.2400VD—1.11900 XI0-4=0

1~ Forces and
moments

\ I I

The solution of this systwn of uqua[icms is: r,i =—0.2S3S4 x
10-J inch, wB=0.03279><10-i radian, rE=0.43filS’x10-g imc]~,
and v~=— O.9024X 10-~ inch.
The forces ancl moments introduced hy ~~achof [II(I imlividunl
operations and by the combination are given in th~’ follo~sing
t~ble:

>

‘\ Forces and

\

moments

RB XB Ru TB

Opemt ion
.—

tic=ll)+ h . . . . . . . . . . . . . . . . . . . . . . . . 0 s 10267 0,(?4153 o
t7.4=-o.2G384xlo-~ in . . . . . . . . . . . . o.8s343 –2,35w 0.71130 -1,011”8
WII=O.03279X10-*radian. . . . 0. 292T8 –lo.?51 0.37G12 -o. LW3

VB=0,43518 X10-4 in . . . . . . . . . . . . . . . –1. 17M 5.0328 -1.7491
I

1. W.si

0D=—i).$3~~xl&4 in . . . . . . . . . . . . . o 0 0 0
X+ OpwatiOn F=l . . . . . . . . . . . . . . . o 0 0 0,o~~g

\-
Forcw aml

\
moments

\

~ :

NC Rc TC RD

OW ation
—— _—

Oc= 10-i ~ . . . . . . . . . . . . . . . . . . . . . . . . -2. 95G22 –1.93225 –O.W39 -1. Ilw
f7.4=-0.2S.38iX10-4in . . . . . . . . . . . . . o 0 0 0
WB=o.03~x~o-4 ram.. . . . . . . . . –2.03S2 0.20570 0 0
U~=0.43618X10 -{ in . . . . . . . . . . . . . . . -3.5342 0.265.5? o 0
OD=—O.33242X1O+in . . . . . . . . . . . . & 6350 I.oml o.03WJ 1,llxl

.Z+Operation F=l . . . . . . . . . . . . ..- -1.8036 -o. 23iOS 0.01697 0

The use of combined operation F is dcsirtibk! in bci]anci]]g tho
radial residual force at. C, since it, also rccluccs the momcn~
residual at C and adjusts the hmgential residuals fit B and C
in the desired manner.

The residual considered after use of operation F is RD=
402 pounds. I.u order to balance it by a dispIacenwnL
VBwhile the balance at A is preserved, a r~-ciisl)lricrnlent,
must be undertaken w well. lf CB= 10-4 inch, then

2.69614
“A=-3.34833X10k

= –(1.S(3522X 10-4 inch. Tllu forcw tmcl

moments introduced by these individl~al opera t ions M
we]] as by the combinations are given in the follow-ing table:

I I I I I
Opwation

\ “ “B’ “ ‘B ‘“C ‘c ‘c ‘“— —

vB=10-< in . . . . . . . . . . . . . . . . . . . –2. 69514 11.4697 –4. 00391 3.4352 -8.10267 0.65158 0 0— —
UA=–0.30522X10-4 in . . . . . . . . . 2.6961 –7. 1843 2.1710 –3. 1949 0 0 0 0_ _
Z+Operation Gil . . . . . . . . . . . o 4.2854 –l.S3891 0.2403 –8.10267 0.60158 0 0

Consider the effect of eliminating the l?B-residuaI by use of Ii’c-resiclual of about 30 percent of the prc-rious Rrrcsidual
opmat ion G. The moment residual ATBwould also be re- ef 451 pounds would be introcluccd, uml a lnrge Nrrcsidu~l
duced by roughly 1000 inch-pounds, the T~-residucd would would be. introduced. The last two effects arc undesirabh’,
be brought in closer agreement with the Tc-residual, an However, by use of operation F again} the Rc-resid[~nl can IN
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balanced \\ithout introducing a new l?~-resklual. The Imge
,VrresiduaI is not so easily bakmced unless a new combina-
t ion in~oltig joints A, B, and D is evolved.

Suppose, therefore, that a rotation of C and a ~adial dis-
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placement of D are combined so that a moment at C can be
eliminated and so that the balance of D is preser~ecl by use
of the combination. The indi-ridud operations and the
combina t iom are given in the following t*bIe:

,\: ~

~orws and I I
moments

\ RA A-B RB TE .\-~

~ ~~~fj,~~

lJJJ.

I?(J TC ED

/

f PC=lH radkm . . . . . . . ..-- . . ..--..
!+- -:’”” ~ ~

–2?Ss 3bT j -~zq -5.2~~7 I -7.3=4 ‘

; u,9=-5w2.Lxlc-4k. ........... ] 0 7.3524

l—i%++ ‘= 1–‘:: d; z+ Opwaf iOn Hal . . . . . . . ..--. _.. (1

If operations G and H are combined so that the moment at C introduced by the combination is zero, the resulting
forces ancI moments are gi-rert in the following table:

r

r’\~ “ ~ “a ‘B ~T81 “c” ‘Rcl=c 1 ‘D

:*1 :;* ~ -:= ‘+*1

: 1x( G).. - . . ..-.. -..-. .- . . . ..--... O

–{). 1&t1f13x{H>.-.-___-.___.--._.,
z~OwMiom1=1........ .. .. .. ..

Use of operat ion I results in liquidation of the R.-residud,
in reduction in the .Y~-residual, in adjustment of the T~-
and Trresiduals toward the desired equality, and in intro-
duction of an l?=resicIuaI of 13S pounds. The latter can
be balanced by the use of operation F, which w-ill preserve
the balance of A and D ancl mill not affect. the iVB- and
RB-residuak.

Mer this fifth operation the TE- and T~residuals are
appro.timately equal and opposite as desired. Therefore, a
group operation, in-roItig equaI and opposite tangential
displacements of B znd C and sufficient radizd displacements
of A and D so that the Iatter remain baianced, is de-reIoped
in the following table:

\ Form aod ~

\

moments

i “

‘ A

A-B ~ R, TB

Opwstion
!4’

:Wm [ -13.1014 ! 3.4352 ~ -30.9:63uB=lo+iD . . . . . . . . . . . . . . . . . . . . . . . i

Uc=—lo+ ill . . . . . . . . . . . . . . . . . . . . . la la --lI -26.2USS

c.4=LlSoxlo+ in .. . . . . . . . . . . . . ., —3.%= /

7+

IO. 5i3 ~ –3. 1949 ~ 4.7a17

?D=0.~669x10+ k ..............~ O—---t-Y-- io~o
(-.======+

Z+CJwratiOn J= I . . . . . . . ..--.-../ O , -~~, q -.72.461

<Ti i’
xc Rc TC ED

!

Operation I
‘~i O?4B=lo+il . . . . . . . . . . . . . . . . . .. . . . . i 25.%35s~q

Uc=—lo+ in . . . . . . . . . . . . . . . . . . . . 5-2%37 \ 0.3s929~ 2i.oS3 I 1.0375 ~

D3=Llmx Io+rn................ o o]a ~fJ

I -6. l~n ~ -0.93426 i
I

aD=o.Km9xlo+h . ........------ –0.WI)? I –L0375 I

Z+ 0pm3ti0QJ A l . . . . . . ..--_-... \ -0.9X4 ~~1 52.421 \ 0 \

I_~seof operatio~ J liquidates the Ta- and Tcresiduals and
affects Iittle the balance in the other degrees of freedom.
The remaining residuals are considered negligibly small, the
momeni of 3(I9 inch-pounds bei~g appro.sim~teIy 3 percent
of the maximum moment in the ring. .$s in the pretious
problem the individual displacements can be determined
from the magnituc?es of the group operations and thus the
unknown moments and tangential forces at A and D cal-
ctdated.

Mthough the calculatio~s of the group operations shown
herein ha-re beeu carried out on a computing machine with
fi-re significant figures maintained whererer possible, suffi-
cient accuracy for engineering purposes can be obtained by
the use of a sIide ruIe. In cIe-relopirg this procedure a slide
ruIe w-as used for all computations and the results aameed
sat.isfactortiy with those shown herein.

OYAL-SHAPED RIXG WITH lXTERX.4L BR.~CIXG

The ring shown in figure 8 is used as a third exampIe of
the new reku~ation procedtu-es. & a check on the resuIts
of this procedure the system of equatioris given by the
operations tabIe and external forces is also solved by the
exact mathematical methods of matrix calculus and of the
growing-unit method. In order that the charts and tables
of reference 6 couId be used in cIetermtig the Mueme
coefficients, the foLIow-ing physical characteristics of the
elements of the ring are assumed:

Segments AB and EF:

$=+=().10
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p=45”

.lH= 106 lb-in.~

L=18,85 in.

Segments BC, CD, and DE:

pzz(y

EI=106 lb-in.’

L=18,85 in.

Segment EG :

++=O.10

p=()”

E1= 106 Ib-in.2

L=16.97 in.

,A

T
F1ccriE 8.—Owd-shrtped ring with positive directions of forces and morwnts shown.

Because of the symmetry d.mut h line through AG F only
one-ldf of the. ring need be considered. Joints A, G, UIC1F
are then restrained from rotating or displacing tangentially
tincl cannot be subjected to radial forces. The assumecl
positive directions of the displacements and of the forces

and moments at each joint are shown in figure S, From
the foregoing assumptions, the influ~’ncc cocfllrien[s and [hc
operations table given in table 11 are detcrminwi.

The horizontal external forces of 1000 poilntls at C al~({D
are resolved into their tfmgentid and radia[ componun[s,
Thus the external forces arc:

RC=965.93 lb

Tc= –253.82

RD=–965.93

T.=–25W32

by the method of referenrc 9 to Iw:

e~=—605.73x 10-3 in.

WB=40,825X10-3 radian

LTB=35,144X 10-3 in,

UB=—300.06X10–8 ill,

U}c= —11.445>X10-S radia]t

CC=664.55X10-3 in.

~c=_7~~82x10-s in.

w~= —22.97.5X 10–s racli:ul

z~~=—M.734><10-$ i]l.

UD=90.130X10-S ii].

WE=6.2337X 10-3 rflclinn

2’n=—42,621 Y~10-3in.

UE=32.513X10-3 in.

z}F=—.44,(j4~xl(j-3iJ~.

on the bars rathpr than on tllc joints:

N4=-3118S in.-lb’

T~=402.51 lb

if~==105.43 in,-Ib

T,=–lW.57 lb

N~= –371.06 in,-1’o

RG=o. 43 lb

T,$=584.W? 1’0

(23)
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Figure ~ is t~~benaing-moment chgram for the ring w~th

these reactions nppliecl.
By examining the ec~uilibriurn of one-haIf the ring under

these reactions and the externaI forces, the accuracy of the
operations tabIe is established. Since R~ and Rr are zero>
the summation of forces in the vertical direction is simply:

The summation

The summation

zF,.=RG= 0.43 lb (q~)

of forces in the horizontal direction is:

IF.= TA– TF– T.=O.10 Ib (2S)

of moments about poiut G is:

.Y.+.T,+ T,(24)(1–0.70711 )–1000(2X36X0.25 SS2)

=–:311S.91+402.49 (.57.W1)-371.O6+1O5.43-

1S2.56(’7.0294 )-1 S,635.04

= 17.45 in.-Ib (26)

The t’qudibriurn conditions for the half ring are appro.ti-
mateIy satisfied, the maximum percent error being a moment
of less than 0.1 percent of the applied coupIe of 18.635 inch-
pounds. It is considered that the accuracy of the operations
tatde is established by thk equilibrium check.

.%ppro.ximately 20 man-hours by an unskilled computing-
ruachine operator were requirecl to solve this system of 14
ec~uatiom. It is estimated that, a skiIIecf operator familiar
w-ith the Clout method woukl require about 10 man-hours.

In appleyin.g the Crout method to this problem the co-
efficients of the linear equations are assumed to be mathe-
matically exact amd, therefore, as mauy figures as could be
carried on the 10-bank computing machine are used through-
out the computation. in this way an accurate solution is
(Ihtainecl and the additional computing work is not great.
.Afterward the ~-ahles of the tinow-m can be rouncled off to
the physically correct number of significant flgues.

Use of the growing-unit method of solution on this ring is
demonstrated as folIow-s. This method is described in detail
on pages 39 to 46 of reference 5. It is demonst~atecl on this
new ring as am application of the procedure to a ring tith
many intermecIiate joints between the center line of sym-
metry points. In applying the growing-unit method to this
ring the units are combined into bars of increasing length
until cIispIacements of all points are known such that the
onIy unbalanced forces remtiining ac~ in the radial direction
at A a~d F when unit r&diaI displacements are undertaken at
A ancl F. Then these forces at A and F can be eliminated
by appropriate racIiaI displacements of A and F and the finaI
cListortecI shape cletermined.

The first units to be combined are AB arid BC. ln order
to eflect this combination, the displacements of B required
to maintain the baIance of B during a unit r&diaI displace-
ment of A and unit radiaI, tangential, and rotational dis-
placements of C must be determined. The displacements of
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B required to maintain the baIance of B while point A is
displaced radiaLIy 10-3 inch are given by the equatiom:

L3TB=—454.34?L’B+6.723s~B—
7S.411~B+5.9020 X10–3=0

~B=6.~?38U’B–1~.0g3rB+

0.55690 uB-4.577SX10-3=0

.1

(~i)

TB=—7S.4111~>B+ 0.55690rB—

84..510uB+14.662X10-3=0

The soIution to these equations is: ~.= –0.026434 XIO-3
radian, r~= —0.3S424 X 10-3 inch, and u~=O.19549 X 10–3
inch .

If the forces and moments at points A and C due to a
displacement t’. =10-3 inch and due to the foregoing dis-
placements ~’B, r~, and u~ are summed, the foLIo~~ equa-
tions are obtained:

BL=–2.661S Ib

AYC=10.699 in.-lb

~c=–lAS71 Ib

TC=3.2614 lb

The displacements A“B,RB, ancl TB are zero since thzt is t-he
condition stitisfiecl by equatious (27).

The dkplacements of B required to maintain balance a~ B
during unit rotatiom~l, raclid, or tangential displacements
of C are determined in a similar manner and are collected in
tabIe 12.

The forces ancl moments given in the Iast se~-en rows of
this table constitute the infhence coefficients for a new unit
of the ring, nameI-y, the segment ABC. This utit is Dot a
bar, the center Iine of -which is an arc of a circle, but rather
one composed of two arcs of circles. This combining of
units, extended untiI the e~tire ring is one segment, is the
main principle of the growing-tit method.

Each column of table 12 represents a group displacement
macle up of inditiduaI cLisplacemeuts of points A, B, and C.
Let these group cIispIacements be ideutfied by the Roma~
mrmeraI given at the hetid of each cohm.n. For example,
group H is made up of the displacements IL’== 10-3 radianl
WB=—0.21631X10–3 ~adian, ~’B=—0.23971 X10-3 iRCh,
uB=o.i41g;x~o–3 inch, aDd r~=rc=uc=O. The moment
at C, for instance, caused by the application of rn units of
the group displacement. 11 is then

xc= —3S9.56ZU (29)

With a similar notation for all other forces stud group dis-
placements, equations (3o) may be set u-p representing the
requirements for equilibrium of joint C under the external
forces acting at that point, balance of B being maintained.

JYC= —3S9.56.rn- 10.093rm-53 .771.rn-=0 >

Bc=–10.093xu–6.7529xm–10 .615.rm+965.93=0 L (30)

Tc=–53.771zm–10 .615rm–54.199znr–25S. S2=0 J
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The solution to this system is $,, = 1.0476, x,1,=217.61, and
YIV= —48 .436; ancl the foIIowing forces and moments me
introduced at A and D:

RA=–557.43 lb

ND= –2,666,6 in.-lb

I

(31)
R~=184.66 lb

T~=626.46 Ib

The forces ancl moments a t D are adcIed to the external forces
applied to the ring at D and are balanced after tl~e unit
problem for the segment at ABC.D is estaliished. The
R.– force is not balanced until the complete ring is one seg-
memt ancl until the RA– and RF– residuals can be IAancecl
together.

‘The nexL unit to be consiclerccl is the combination of the
ABC segment with bar CD into the segment ABCD. The
problem is to find the forces and moments tit A, D, and E
clue (1) to a unit radial displacement of A with joint D fixed
and (2) to unit radial, tangential, ant] rotzt.ional displace-
ments of D with A and E fixed. Joints B and C are free to
displace so as to maintain the balance at, B and C i~ each
of these four cases. By determining the magnitudes of
111,ZIII, and XIVrequired to balance C in each of these four
cases, the required displacements of both B and C are im-
plicitly determined ancl the unit problem for segment ABC D
is solved.

The magnitudes of the Xu-, X1ll-, and zlv-operations re-
cluirecl to balance joint. C when A is displaced radially 10-3
inch ~ncl B permitted to displace so as to remain in balance
tire given by the following equations:

Nc=-389.56r11- 10.093x,I,-53.771 r,v+10.699=0

Rc= –10.093~Ir–6.7529zI,I– 10.615.rI,r-l.8871 =0

)

(32)

Tc=–53.771rlI– 10.615 z,,,–54.199r,Y-+ 3.2615=0

The forces and momcnk. at C to be bahmcccl are given in
group 1 in table 12. The solution to these equations is
rII=0.t12149i’, rIII=—0.53843, and ~Iv=0.14430. Use of
these multiples of opera~ions II, 111, and IV and of a unit
amount of group 1 results in the following forces and moments
a~ A and D:

RA=–0.94505 lb

A’~= 6,7928 in.-lb

1

(33)
R== –0.74924 lb

T~=o.77749 lb

The forces ancl moments given by groups V, ITI, VII, ancI
VIII in table 13 are the influence coefficients for segrnen~
ABCD, For example, the forces and moments introduced
at A, D, and E clue to a unih radial displacement of D with
A cmd E fixed and with B and C in balance are given by VH.
R7ith these sets of coefficients it is possibIe to balance joint
D whiIc the balance of B and C is preservecl. The forces

(36)

and moments LObe ba~aneed at D are (1) the c!xl~’rnal ft)rrcs
on the ring at D and (2) the forces an(~ moments lvIlic]l are
introduced at D by the balancing of C and ;vhicl~ ~IY @von

by equations (3 I). The residuals to be btilanccd rt~ D are
thus:

ND= –2666.6 in.-]b

R~=–965.93+ 184.66 =–781.27 Ib

1

(34)

T~=–258.82+626.46 =367.6$ Ib

The equ~fions which con[lition the btilancing of joint D,
from consideration of groups T’1, T~II, and }’111, arti swm
to be:

i~Tfi=-346 .88xv1- 16.697z1,11-43.74 t5zvIT1-266G.G=O

RD= –-16 .697xV1–5.6500f vl, – 12.458zVIII—7S1.27= O

1

(35)

T~= –43.745xv,–12.458rvII– 50.817x1.11,+367.Gl =0

The solution to these equations is 2},1= —3,3100,
ZV1l=-328.09, and xv111=90.518, ]vhich give ihc follmving
forces and moments:

R.=293.71 lb

A7E=4W9.4 iu.-lb

RE=–522.t39 lb

TE=–149.M lb 1

ils in the balancing of C, a tangential force and mnnwllt arc
introduced at. A by [his bulanring of D, but bcczl~sc of
symmetry the equilibrium of A is not disturbe(l by tl~cse.
The RA-forces will be balanrcd httrr and lhc rcsidmds n[ E
will be balanced when thp influence coefllcients for sqynm~
ABCD E have been determined.

lD order to find the influenrr coefficients for bar ABCD E,
the forces and moments at A and E due to a rn(lial disI}lnrr=
mcnt of A with E fixed and at A, E, mm{F dup to unil ratii~l,
tangential, and rotational dispIacmnents of E with A and F
fixed must be detxwmined. By de~errnining tIIr ma:nitudw
of groups VI, VH, and Y1ll rcquirrd to balance D ilk crwl~
of these four cases, the reqllircd (lispIacrmrnts of B, C, and
D and the required forces arid momtmts ctrr (1[’k’rmi~~ed.

The magnitudes of the groups 1’1, VII, mnri 1’11I required
to balance D when joint, A is mo-rcd ratlially 10-8 inc]l an!
given by the foIIowing equat io~]s:

ND= —346.8SxyI—16.697 x\,II—43.745x\,IlI-~ 6.792S=0

1

RD=–16.097rv1–5 .C500~r11-12.458~v111-0.i4924=0 (37)

TD= –-43 .745xir1– 12.458~\.11—50.S17tyIIr+ 0.77749=0

‘l?hc forces and moments fit D to be bahmccd ljy groups VI,
~’11, and T’111arc given by Yin tubI~~13 an{l am tl~c consttin~.
terms in equation (37). The solution of thcsu c(llufitions is
~\rI=0.028042, zTrll= —0.42660, an(l rVIII=0.0~5744. l’hu
summation of forces and moments (Iuc Lo a nnit mqq]i[ud[c
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of group V and the foregoing nmlt iples of groups VI, TH,
and 1~11 are:

R., = –0.36050 lb

.VE=4.1055 in.-lb

1

(38 )
R.= –0.31703 lb

T~=o.19226 Ib

In a si.mihir mimer the compIete set of iduence coeffi-
cients for segment ABC D E is cleterminecl and is gi-ren in
table 14. For exampIe, the forces and moments in group XI
are the forces and moments introduced at. A, E, F, and G by
a unit mcIial displacement of E -with A, F, and G fised and
w-ith points B, C, and D free to clisplare so as to remain in
equilibrium. With these influence coefficients joint E cart
be bahmced whiIe the balance of B, C, and D is presem-ed.

The forces and moments to be balanced =t joint E are
those int reduced by the balancing of joint D w-ith groups T1,
IT1, and WI1 ard are gi-ren by equation (36).

The equations in .rx, .rm, and z- baIancing joint E under
these loads are:

IV.= –533.92zx–38.099r= –?9.579zm,+48s9 .4=o

R.= –3S.099.rx-49.295xx1 -53.432zx=-522.69 =0 \ (39)

IT.=–29.579.rx-.53 .432.rm-76.321c_-l 49.69=OJ

The solution to these equations is rx=ll.184, r~,= –51.518,
and rx11=29.771 and the forces at A, F, and G introduced by
this balancing of E are:

R,l= 67.974 Ib

R,=–266.6s lb

1

(40)

R.=70.66S lb

The tangential forces and the moments introduced at A, F,
rmd G are not considered in this balancing of the half ring,
since these are equilibrated by the forces ancI mome~ts from
the other half of the ring.

The final combination of units wiLI be the combhation of
bar EF with the unit ABC DE. When this union is effectecI,
the infiuence coefficients for the haIf ring as a unit will haw
been determined and the rac]ial forces at A and F can be
baIanced simultcmeousIy. The radiaI forces at joints A and
F due to a unit ixadiaI dispIkcement of A w-ith F fixed ancl to a
wit radiaI displacement of F with A fired must be deter-
mined. In both cases joints B, C, D, and E are dispIacecI so
as to remain balanced.

The actuations gi~ing the magnitudes of groups X, M, and
X11 requirecl to balance joints B, C, D, ancl E when joint A
is dispIaced radially as in group IX are:

:Y.=–533.92XI–3 S.099KX,—29.579XXII+ 4.1O55=O

R.= –3s.099xx–49.295xxr 53.432rxrr-O.31 703=0 \ (41)

1T.= –29.579XX–53.432ZX, –76.322X=II+0.19226=0 J

The solution to
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these equations is 2X=0.00 W39S, .rH=
–0.051804, ancI rm,=O.035128 and the forces introduced by
a unit. magnitude of IX tmd b-y these multiples of groups
X, X1, ancI X11 are:

RA=–o.29s57 lb

R,=–O.33361 Ib

1

(%2]

R.=0.035176 lb

The equations gi~ing the magnitudes of groups X, X1, arid
XII required to ba~ance joints B, C, D, and E when joint
F is dkplaced raclially 10-3 inch are:

X~=-533.9?Xx-3S.099.C~~ –29.5i9.r~~~-5.9020=0

1R. —–30g9grXrX ‘49.295~x1—53.43 ?~.*1—4.5773=0 (43)

T~=–29.579xx—53 .43?xx1–76.3?lrx11–14 .66?=0

The solution to these equations k XX= –0.017132, x==
0.50354, and r== —0.53797 ancl the forces introduced at
A, F, ancI G b~- a radiaI displacement of F of 10-3 inch and
by the foregoing mult ipIes of groups X, M, and X11 are:

R&= –0.33361 Ib~

RF= – 1.4470 lb

~

(44)

R.=1.1156 Ib

The forces given by equations (42) ami (&tj represent the
influence coefficients for the entire half ring and are labeled
groups XHI artc[ .XIl”, respect i~-ely. These forces permit.
calculation of the muItiples of groups .X111 and XIJ’ rccluired
to balance the radial forces at A and F. These forres are the
tot al forces remaining from the balancing of C, D, and E;
RA is given by the sum of the R=i-forces of equatiom (31),
(36), and (40) ancI is:

RA=—557.43+293.71 +67.974 =–195.75 lb

The Rrforce is the force introduced by the balancing of
E alone and is given by equation (40). Ii is:

R,=–266.6S lb

The equations giving the magnitudes of groups X111
XIT” required to balance joints A ancl F under those Ioacls

R2=—0.29S57rm—0 .33361 rXn-—195.75=0

R,=–0.33361.1m– l.44H)xxn--266.6 S=0 1

The soIut ion to these ec~uations is r&~II= – 605.73
rxn= —44.646. The racliaI force at G introduced by

ancl
are:

(45)

and
this

balancing is –71.114 pounds, but the RFforce given by
equation (40) in the Lalanetig of E is 70.66S pounds. The
difference between the t-it-o, —O.446 pound, is considered
negligibly small comparwcl to the appIied loads of 1000
pounds.

With the balancing of joints A and F ancI the substantia-
tion of the balance at G, the entire half ring is bakinced.
The tottd deflections in each clegree of freedom can now- lx
calculated and usecI to determine the unknown bending
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moments and tangential forces at A, F, and G. In order
to calcuIatc these deflections the balancing equations (30),
(35), (39), and (45) give the magnitudm of the group opera-
tions invoIved while the cqurttions determining the group
influence coticicnk give the individual oper~[ions involved
in each group.

Table 15 gives the magniiucle of rrII group displacements
from 1 to X1T7 implied in a unit application of any one group.
For example, row X in this table indicates (hat a ll”nit
magnitude of group X (thzrt is, xx= 1) is equivalen~ to the
sum of the effects of X~,III=2.1885, XVII= —4.6760,
Xl,I= –0.161S6, and W3=10-S radian, or the sum of the
effects of X1V=2.9219, .X111=1.7552, XII= —O.19736, WE=
10-3 radian, wD=—O.16186 X 10-3 radian, OD=-4.6760 X
10-Z inch, cmc] u~=2.1885 X 10-3 inch. During the solu-
tion of the problem t.hc magnitude of group X which was
explicitly used wrrs 11.184, as given in the las~ column of
table 15.

From tabIe 15 the total magnitudes of each group opera-
tion may bc found. For example, the total magnitl~cle of
group JTI is:

xvI=(l)(-3.3100) +(0.028042) (O)+ (- O.l6l86)(ll.184)+

(0<037474) (-51.518)+(-0.0022427)(29.771)+

(0.024494) (–605.73) + (0.022857) (–44.646)

=_~cJ&975

Th(? total disp]acemenb Wflis:

w~=(xl,I) X10–3=—22.975X10–3 rrrdian

SimiIarly the displacements of fill points except
may be ccdculat.ed from table 15 rmd are gi~en in
row of th~t ts,ble.

(46)

(46:1)

point B
the last

Point B was displaced during the application of groups I,
11, 111, ancl IV, rmci therefore the magnitude of its dis-
placwmcnt must be calculated as indicated in the following
example:

WB=(-0.026434 X10-3)(-605.73)+

(–0.21631X10-’) (–11.444)+

(0.0:35554 X-LO-’)(664.55)+ (47)

(0.017847 X10-’) (–72.2S6)

=40.825 x10-3 inch

~vhere th t first number in each product is the magnitude of
w~ involved in each unit application of groups I, H, III,
and IV, respectively.

The total clisplacements USCC1arc assembled in equations
(47a).

COMMITTEE FOR AERONAUTICS

z~A=—605.73 X 10-S in.

WB=40.825X10-3 radian

Z’B=35.144><10–3 in.

UB=—300.06X10-3 in.

Wc=—11 .444X 10-3 mdicrn

vc= 664.55 X10-3 in.

UC= —72,286X10-3 in,

VJD= —22.975 X 10-s rti(~im]

DD=—94.731X10-3 in,

7fD=90.127X10-3 in.

WE=6.233~ X10–3 rcrdifin

c~=—42.620X 10-3 in.

uE=32.511X10–3 in.

Z,r=—44,6~~Xlo-3 i~~, -

(’f7a?

These total displacements constitllte tht m]know]ls of ~hc
system of eqUations given by thd op~l’fi~io]ls t&~)l(?WI({ ~]1~
external forces; comparison betwcwn this grolving-nni~ tilid
the matrix-ca~culus solutions givcm by equations (47n) nn(l
(22), rZiEpcctively, indicates good agrwnent for t Ilc [dis-
placements. In ftict., the forces and momrnts given by tllr
two methods ditler by less than I percent anti t l~rrcforc nrc
given only for the matrix method (equation (23)).

Several generaI remdcs are made abo~lt [11(Igrowillg-llnit
method:

(a) k determining the influrncc Cocfficirmts an(l in lJ}l1tIII[,-

ing tho external forces and moments, sets of equations lsitll
the smne left-hand siclcs but Ivit h different cons( ;Illt t,c’rIils
me usecl several times. This simplifiw soll~tiol] of till+ ulua-
Lions and reclrrccs the comflutational Jvorl; cmlsi[lcral~ly.

(b) In or(ler to obttiin sufficient. wcuraey of solutio~~ f,,r
*hgs with many joints, calculating m~cllirrcs ml~st be used;

~ve significant figures were carried tlwoughou[ Lho calclll/l -
:ions. However, on the simplrr rings such w LIICcirculw
ing and the egg-shaped ring discussctl pr(~viously, slitlc-rul(~
lccuracy for determining thu displaccrn[mts ill a comhe[l
]peration is probably sufficient. for cnginmring purp(~scs.

(c) A check on the influence coefficients fur composite
xrrs is obtainecl by tipplying I[axwll’s thwrcm of reciproczi
inflections. This is a valual)]e (Icvice for rrssuring accuraf’y
It wch stage.

In applying the nelv relaxation procedures to Lhis ring, it
,xoulcl have l.wn possibk to usc (1]c g~wcr!tl mt~tll(j(.[ (1[,-
;crlbccl for the cgg-shapd ring, tlmf is, to rw1u31(10r(IIC rcsi -
Iuals aft~’r each operation and (lcvelop a sat isfact{)ry corrl-
)inecl operation to reduce as many r~si(luaIs M possible.
However, the number of degrees of frwdom invuIwd i~~tltis
+0.g is large ant!, thmefore, tho Iltlmb(’r of residuals [0 be
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{:onsiclerecl in testing the efficacy of a partimdar operation is
large.

The loachng on the. ring pro-i-ides a clue to o~ereoming
this difficulty. N-o external loads are appliecI at A, B, E,
F, ancI G; moreover, A, F, and G are points a~org the center
line of symmetry. Therefore, if in bakmcing D and E the
balance at the other joints k preserved b~- suitable dis-
placements, attention is &sed on the two joints D and E
and the procedure described for the egg-shaped ring can be
used dfectirely. It m-iIl be recognized that this procedure
is essentially a combination of grotig-unit and reIaxa tion
methods of soIution.

In Eweeuting the proposecl method the bm ABCD, free
only to disp~ace rac[ially at A and fixed at D~ is comsiclered
first. The equations giving the clisplacements of A and B
requirecl to maintain bcdance of these points while joint C
is rotated thro~gh 10–3 radian are:

R.A=—7.13101~.1+5.90 ?Ox’~—4.57iSr~+
14.6t32!uB=o

.\’B=5.9020r.t—454 .34u’B+6.723SrB—
7S.4111[B—3S.4S9’L1O–3=O

R~= —4.577SL’.i +6.723 SU’B—12.093[3B+
[).,5<5fi90UE-l.8576 X10-2=0

T.=l&.662k3=A—i8 .411 EB+0.~5690rB—
S4.,510)JB+15.S76 ><10-3=0

(4s)

The soIution to these equations k r. =4.0195X 10-3 inch,
WB= —0.32255 X 10–a mc[ian, rH= —1.78%2X 10–3 inch, ancI
u,= 1.5277;< 10-3 inch. These dkpIacwnents combined tith
the unit rotation of C -yield:

A’c= –346.56 in.-lb )

R.= –17.67S lb

TC=–40.663 lb

.\ ’~= —38.4s9 in.-lb ) (49)

R~=l.S576 Ib

TD=45.S76 Ib >

Thp moment ancl tangential force iut roduccd at A are not
comidered untiI the bzltincing of the ring is compIete.

In a similar manner the forces and moments for unit raciial
tincl tcmgential displacements of C are determined, as shown
in table 16. The forces and moments given by groups XY,
XlrI, and Xl~I co~stitute the inffuence coefficients for the
disphtcernents of C vrith A and D axed and with joints A ancl
B baIanrecI. Vse of these coefEcients prrmits focusiag of
attention on C and D, the joints at which the externaI forces
are appIied when C is being bahtnced.

The forces ancl moments introduced zt C ancl D mhen D
is dispIacecI a unit amount in each degree of freedom and
when E, F, and G are displaced so as to maintain the balance
thereof are calcuka ted a~d shovm in table 17.

Table IS is an operations table consisting of unit magni-

tudes of group operations Xl’ to XI. Table 19 is the relfix-
atio.n table for this ring which uses these group operations.
The externaI forces applied at C and D are gi~ert in the first
row of tabIe 19.

.%discussion of each step in the relaxation process is given
as foIlows:

Step 1.—Because of the ant is-y-mmetry of the loading and
of the quaskymmetry of the ring about. a horizontal axis
operations r=7-I= 1 and .rX== —1 are applied as a first ap-
prozrimation to the deflected shape. The forces ancl moments
introduced are as gi~en in the followiug ttibIe:

l>+-“.:.!.:.
r

,+ ,:~*~

=’=,---I=I=+=I=+=F=[

(XE?J=-I .........- –L857EI { 2222

Operation K is usecl to balance the R~residual; the same
operation rec{uces the other force residuals but. introduces
Iarge Xc- ancl N~-residuaIs.

Step 2.—In order to recluce these moment residuak an
antisymmetricaI combination of WCancl WDis made, as shown
as agroup operation L:

Howe~-er, use of operation L by itself would reintroduce Iarge
RC ancl ~~-residuals, and therefore operations K find L
are combined so that the fi~-residual w-ill be smaller and the
~~-resiclual elimirtat ed, as shovm in the followtig tabIe:

! I ! ~“

lq +++ ‘++,
–3.33tAXOperati0n

K . . . . . . . . . . . . . . lfJ 6%3

I I

—

i Z+ Opwatim fvl =1 –319. 90 l—-l= +7=–8.%%II
The new force residuals ~ntroducecI by operation M are less
than :30 percent of the original residuaIs and, therefore, the
rate of con~ergence k. felt to be ac{equate.

Step 3.—The rndiaI residuals at C and D have the sfime
sign and> therefore, symmetrical clisplacements rc and ~’D are
undertaken. It. is seen that. such a combination mould
introduce large tangential residuaIs ah C and D. Therefore,
a tangential clispIacement of C (D could have been chosen
instead) such as to ehminate the Tc- ancl T~-forces is under-
take~. The forces and moments introduced by the indi~id-
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ual displaconlents and by
operation N.

[<

Forces rmd
moments

Operation
——. —

(XVI)AL. . . . . . . . . . .
(X1X)=1 . . . . . . . . . . . .

–0.53201~XVII) ..:
—

I Z+ Operation N=l...

NC

——

– 17.678
.—

1.8s76

21. 632–

5.811
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the combination are denoted as

17c Tc ND RD TD

— — .— .

-.5.4154 –u. 928 -1.8576–2.2.2?? 13.781

–2. 2277 –13. 781 11.535 –6. 2441 12.706
— — ——

6.8773 26.709 –24. 406 7.3316 —20. 587

‘ly—l—
–0. 7653 ] -14.730 -1.14001=

The use of operation N reduces substantially all the residuals
exceptr NC.

Step 4.—111order to reduce NC ancl at. the same time keep
the Tc- and l’~-residuals small, a combination of groups
XV and XX is made. Group XX is included since a force
i?lcreasing the residual T~ would be introduced by the use
of X\T alone,

\
Forcesand

moments

Opcration \\ “c ‘c ‘c “D

I(Xv)=l . ...... ... .. . –346. 55 –17. 678 –40, 662 –38. 489

0.91279X( XX) . . . . . . . . 41.875 12.579 45.616 –38. 616
,-=

Z+ Operation 0=1 . . . . . –304. 67 —5. 094 4.954 –77. 105

RD TD

-—
1.8576 45.876

11.597 1-45.876

‘Ie
13.455

Steps 5 and 6,—.4fter opertition O is used, the largest
force residual is approximately 6 percent of the appIied
forces and the moment residuals are small. It was con-
sidered desirable to reduce further the force residurds.
Therefore, operation I was used again so as to reduce RD,
the largest force resiclual, and then XVII was usecl so as to
reduce the resulting Tc-residual. .Mter this si~th step the
largest residual of 4 percent of the external force is con-
sidered small enough.

.k check table using the total displacements is used m a
check on the ticcu~acy of the combined operfitions xnd on
the re~axation table, The total individual displacements are
mlc.ulabxl as discussed in the previous two examples and are
tls follows:

t)A=—596<18X 10-3 in.

U)B=36.779X 10–a radian

CB=0.22394X10-~ in.

v~= —304.69X 10–3 in.

WC= —14.32X 10-3 radian

rc=561.66X 10-~ in,

IIc=—114.61X10–3 in.

U1~=-18.4X 10-3 radian

~,~=—133.66X10–3 in.

u~=3.7242X 10–3 in.

WE=7.4813X10-3 radian

rE=30.50’i XIO–3 in.

uE=-41.70SX10-3 in.

@=59.979X 10–3 in,

?)~=114.52xlo-s in. .

(50)

t
[i
e

(
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It is.pointed out that certain of tl~mc disp]acrnlcllts diff{:r
considerably from those given by the c.wet. solutions of tllc
matrix-calculus and growing-unit methuds, mainly bccvil]sc
the relaxation solution k approximattj and in it. joint G is
permitted to displace radifill~.

The unknown reactions glwm by tho foregoi]lg rrlnsn tio]~
procedure are:

il~A= —2851.1 in.-lb

2’.=380.21 lb

NF=140.16 in.-IL)

T,=–224.09 lb

.ii~= —440.45 in.-]b

TQ=64S.18 lb 1

consideration of the equilibrium of Lllc half ring giws;

ZFH=3S0.21 +224.09 –G4S.18=—23.SS 11)

ZFV= O

Zill~=-2851.1+380 .21(57 <941)–440.45+
140.16 —2-24.09(7.0294j-18,fi35

= —1331.8 in.-lb

(51)

The moment equilibrium unl)tdancc is ripproxim~ hJy 7 l)cr-
:ent of the applied rnommt and is considwml mtisfartory
For engineering purposes. If tl mom arcurstc~ r,’pr~!sentatioll
>f the final deflect~’cl shape and conscqucm[Iy of tllc budiug-
tnomcnt tliagram is clesircd, sm-cral more OIWM[ions iIL tl~~,
relaxation table could bu undertd~en NIILI[IIC rcsidllrrls at
U and D further reduced.

The bending-moment ditigrmn givrn by tllc rt$act ions of
?quation (51) is shown in fi~urc ‘3 a]oII~ with that of thr
:xact solutions. The external unbulance([ momcH t of 1331,8
rich-pounds is applied linearly akmg the ring as a dist ributcd
nomen~. If this unbalance is not {Iistribut[vl i]l (his nl8n-
ler, it would b~?conccntrtitwl at eith(~r joillt A or join[ F,
iepending on the direction in }vhir]l tl~c b{~n(ling nlolnc~n[s
ire calculated, and would lead to large rrrors in (ho b~’n(dillg
noment in the m’ighborhood of thtit joint. I t is seen from
lgure 9 that the agrrcmcnt butlv~!cn [11(Icxart and rrIasa[io]l
iohltions is good.

It is pointed OULthtit, by slightly motlifyi~~g tl~c d~~(crn~i-
]ation of th~ influence cocfflci(’nt, for joini D when E is fix(cd
~nd F and G are free to disphire ratlia]ly, a tabhI simihtr ~o
able 17 could be established and solved by nu~trix-rulcu-
us methods. The sIight. modificmt ion is to mnlw T’U=O
n the equations corresponding to tablo 17. Such n solution
s essentially the growing-unit nwtho(~j csccp t. that the ring
s combinecl from joints C and D to A ~n(l F! rcsp[~rli~cly,
ather than from A to F. The Lottl] disphw~’ments i[~ rarl~
[egree of freedom will be [he san~(~in each a]][)rofich.

CONCLUS1ONS

This report contains recornmen(lntions as to tile (choi(ceof
he most expeditious method of solution of th[j simult:meous
near eq~~ations reprcsentwl by the op(:rfitions tablt> and tll(~
sternal loads. The operations tfib~e is first established in
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accordance with SouthweII’s suggestions and, together with
the external Ioacls, defines completely the problem of stress
distribution in a reinforced ptinel or of the moment clistribu-
tion in z fuselage ring. Hom-e-rer, the following generalized
suggestions can be made:

1. In most reinforced-panel probIerns the use of the re-
laxation procedure is acl_rantageous.

2. SoIution of the equations deflu-ing a reinforced-panel
probIem ‘by means of the eIectric anaIogue is adtimble when
many eIoseIy related problems have to be in-restigated.

3. Ring problems are best sol~ed by matrix methods.
4. In verj- complicated ring probIems a combination of

rmtrix methods with the growing-unit and relaxation methods
may become acltisabIe.

POLYTECHNIC INSTITUTE OF BROOKLYN,

BROOKLYN, A’. 1“., June 25, 29L7.
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TABLE 1,—OPER.4TIONS TABLE FOR-”REINFORCED PANEL

[Forws arc! in lb; rlispiacements, in in. X 10-~]

\

Forco

YA Y,9 Y= Y’I. YJ yK Y.v Yo

Operation
‘l—-—-—l—l—l— l— L-4.

o.4=1 .-.. ______ -50.8
o“=l. .- . . ..-. _.. 200
Deal ---------- 46.I6
r~= 1. . . . ..- -- . . . . 2.00
OJ=l . . . . . . . . . . . . . . .
l’K=l . ..-. -.. . . . . . -..
UA#=l .--. . . . . . . . . . ---
zw=l ------------- ..-
ttl.d ,=1 -------
t9~=QE=”J=

}

–4. 00
t’.v= l... . . . . . . . .

Vbl..k 2=1. . . . . . . .
tD=uF=QK=

}
4.00

00=1 . . . . . . -----
(1) E.4=UE=1----- –4. 00
(2)0,4 =VR=UJ=1.. –4. 00
(3) 2JB=VP=1.-... 4.00
(4)UB=L!P=rK=l. 4.00

...- 1
2.00

51.2
4,00

–110, 4
2.00

51,2

4,00 –s Ml 8.00 –8. 00 8.001

–4. 00 8. w. –a 00 8.00 –8.00

4.00 –54.8 6.00 46.8 2.00
4.00 –% (XJ 3.00 -54.8 6.00

–4. 00 e. 00 –59. 2 2.00 51.2
–4.00 8.00 –8. 00 6. Ml -59.2

——

...- ...-
--------
....
46.8 -i-ho
2.00 51.2

–50. 8 x 00
2.00 –.55. 2

–4. 00 4.00

4.00 –4.00

46.8 -izlo
.-. . ..4

2.03 51.2

TABLE 2.—RELAXATIONT TABLE FOR REINFORCED
PANEL-PROCEDURE 1

Cydcs of opcmtiom shown should be repeated until residuals are considered negligibly smaI1.
Fmrmarr? inlb; displacements, in in. xlO+l

‘\ Fowe
YA YB YE YF YJ y= y~ y.

Opcmtion

EMernal forces . . ----- -120 . . . . . . . ..-- . . . . . . . . . . . . . ...%. . . . . . . . 60
ohbmk ,= —2.5 . . . . . . . . . 10 –lo 20 –20 –20 10 –E

. — . —
–110 –lo –20 –xl

–2ifi
70 50

ug=2,35.............. 110 5 9 M 5 0 0
. — —— . — —

0.V=7.33 . . . . . . . . . ..I :1-:1

0 -
Obloek!=3.5 ---------- 14 –<:

~1-1-l -1-
14 –19

UF=O.371 . . . . . . . . . . . . . 1 19

0 –!2

1-
–343 288

0
59

0 343 1: –372 14

,, -.
$/ :, j, :, - _

15 0 29 -71 29
ZJE=1385 . . . . . . . . . . . . . 0 0 3

—70 53
71 5 –15! 3 71

— — — _ _ _ _ _

15 0 32 0
c’0=2 .81 . . . . . . . . . . . . . .

34
0 0

–144 –67
o

130
0 5 144

~
–158

— — — . _ _ _ _

o
Oblmk ~=l.O —.--..... :: 4

0 -62 –26
~: I ~: 8 –4 4

— — . _ _ _ _ _

VE=–0.236 . . . . . . . . . .
31

–;;
8

:
–66 –%2

;: –: –11 o 0 0
— — — — _ _ _

8 –66 –22
0J=–1,025 . . . . . . . . . . . 8 : –i: –: 1:: -4 –48 –2

— — — _ _ _ _

o 4 0 124 4 –114 –24
VX=–2 .65. . . . . . . . . . . . o 0 0 : –124 –.5 135 –5

1 _— —____

o 4 0 5 0 –1 21 –29

TABLE 3.—RELAXATION TABLE FOR

PANEL-PROCE1)LIRE 2

[Forces are in lb; displacement?, in in. X 10-~]

N. Forca

Y. YB Yn Y.P ~“J YE YN Yo

Operation
. — — . . _ _

mKs?24—2!- .

+

EktcrnaI forms.. . . . . . –l% . . . . . . . ---.%.. .x%.. .=-%_ ..:%. $ fja
-10

–110 –lo –m T F — —
DA=–2J65 . . . . . . . . . . . 110 –4. 3 - R. 3

?0 w
–4.3 o 0 0 0

— — —. . _ _

,1)=fl$2...__~ :: !-5“?3!!!:2N-&
(2)=–owl.......__

I 4+H

3.6 –3:e 7.2 -7:2 W: 4 –b.4 -42.2 ,

9.5 -33.8 7,2 –$0.4 -~;— —27.8 W 2
Oblockz= —1.850 . . . . . . . –7.4 i. 4 -14.8 14.8 -1!.8 . -7.4 7.4

. —— — —

~A 3 3 X4X ‘1$’~’ ~’

=--l(3)= -0-689 . . . . . . . . . . .
o

+L

-8.2 -’o. s -14.8 –f3,0— —%3.4 5S.6
–2 i 28 -4.1 40,8 -1,4 –3543 o 0

— — . . _ _

-1.3 –12.3 o –10.2 - 4s. 0
(4)=–0.825 . . . . . . . . . . . -3.3 ;!

20.4 55.0
–6.0 6.6 -5.0 48.9 -1.0, -4’2.3

Oblo& != —1.08. . . . . . . .

(1)=–0.188 . . . . . . . . . . .

: : q : q - -q

TABLE 4.—RELAXATION TABLE FOR II MNFORCK1)
PANEL-FIXET) ENTDS

[Forces are in Ib; displ&@menLs, fn in. X 10-~1

=~1 ‘ i z 2 : k2
E1tcrnal fumes. . . ..-. – :2J -... -.. . . . . . . . . . . . . . . . -=----- --,-=W -.---n- ...=---
0A=—%3G . . . . . . . . . . . –4.7 -110.0 -4.7 . . . . .._ . ..=.-. . . . . . . . . . . . . . .

8.1 -12.8 -16.8 -94.4
1:.6 –13.8

I-J

-4.0 . . . . . . . . . . . . . .
(2)=–1.733.......... 6.9 –o.9 Q4.4 –11J,3-PQ.G -3.4

——. — — ,—
15.0 –19. 7 13.8 -30.6 –14.3 -W 6

rB=—o.357 . . . . . . . . . . . -0.8 19.7 -0.8 -18.3 . . . . . . . . . . . . . . . ..= . . . . .:?.:-

— — % = zk mk
14.2

(3)=–0,s3.-. -- . . . . . . –3. 4 ;. 4

:J:::=ls33E13!!‘ZE0:3 ......_ ...?....=.=”:........

–:. 5

-- 1 H!

7.5 6.7
(1)=0 .124. . . . . . . . . . . .

-7.4 0 -62,5 -52.5
0.5 –6. 7 :; 5.8 0.2 . . . . . . . . . . ...=

— —___
–o. 5 0

0. I -:: 0.2
-1.6 0.2 -626 -625

(2)=–0.0292......... -:) 1.G -0.3 -1.4 -0.1
— —__

-0.4 7.9 0.2 8.4
t’B=0.1i3 . . . . -------- 0.3 –?.9

-0.1 mm
0.3 7.3 . . .. O. . . . . . . . . . . . . . . . . . . . . . . .

— ——— ——
-0.1 0.5

(3)=0 .265. . . . . . . . . . . .
15.7 0

1.1
–0,1 -23.9 -LYLE

–!. I 1.6 –15.7 0.5 13.0 . . . . .. . . . . . . . .
. —__

1.0 -1.1
(4)=0 .22s-- . . . . . . . . . . 0. g –o.9 ~:: –:.8

0.5

r

13.5 –33. % -5ZG
1,4 –13.5 0.5 11,7

T -20 --iTT 1.9 T— -s3.4 -10. !3
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TABLE 5.—OPERATIONS TABLE FOR REINFORCED PANEL-GROWING-UNIT METHOD

[Forces are in Ih; dispLwemeDt% in in. X1O+]

Y.v I--c

‘-------‘1+
Y-E Ys

. . . . . . . . . . . . . . . . ------- -------
-------- -------- -- . . . . .
------- - --------

43.8 2 ....... -------
2 ~L 2 _______ . . . . . . .

–101. 6 46.8 2
4 –H6.4 ~ 5L 2

.x “ -a:H
l-if YF >“, YE

.46.s ?. -. . ..-. . -- . . . .
2 a5L2 ........ .......

–1OL 6 4 M. s y
–110. 4 2 5L 2

:-. s ~ –101. 6 4
2 51.2 –110. 4

. . . . . . . . &g 2------- .
2 am.2

.- . . . r—— —f—

(D SAIL....................’ –5(1. s ~

(a OB=l . . . . . . . . . . . . ..--.. -.. _ti 2

(3) ?K=l . . . . . ..--. . . . . . . . . . . . ::. s 2
(’o UF=I . . . . . . . . . . . . . . . . . . . . .
(5) 8J=I . . . . . . . . . . . . . . . . ----- . . ...?.-.. ..:::?..
(6) 8K=1 . . . . . . . . . . . . . . . . . . . . . ----------
m 8.v=I-- . . . . . . . . . . . . . . . . . . -- . . . . . . . . . . . . . .
(s) SO= I . . . . . . . . . . . . . . . . . . . . . -------- . --------

(9) o.ow2x@ .. . . . . . . . . . . . . . . &w –2
(10} (1)+(3 . . . . . . . . . . . . . . ..-. –XL 7 0

–46. 9(11) 0.9’21X(1) . . . . . . . . . . . . . . . . -. :-y.. -”.”. . . . . .

--------
--------
. ..... .
....... .

--......
-.......

... ----

.......

.......

.------
--.....
--.....

....-. .
-.-.. .

-------
.......
-------
.......
.......
.......
--.....
-......
-.-.-.-

---..--

U T1 1. W3 --------
.!6.9 3.s --------
+3.2 1. S5 -..- . . . .
0.1 3.5

–$s.3 ~.4 46.S
3.5 0.2 --------

--------
.......
........
.... ....
--------

--......
2

(lZ, U.W2YOX(LJ . . . . . . . . . . . . . . . :L
113) (3)+( 11)+( 13 . . . . . . . . . . . I

, -;.0

0.07*X(1):..:...........
0.923X(2)............----
(4)+(14,+(15}...........
0.3ZSX(13)...............
o.L
(5)-HIT0.1.....

0.8
(6)+(20
0.7..,,,,

0.1
(73+(23;:.....

–3.9
L35
o

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. ---------

. . . . . . . . . .

0.2
—51. 3 L35

9.4
–-s 3

L 5

–8. ~
i. s!
o

--------
1.s 3i. sI

a3
–62.5

s. o
L 7

;~. i

am.2
L i
3.1

13.8
0.3

4s. 2
–66. 9

. . .

0

. . ------
--------

--------

. . . . . . . .

–Y. Y
c1

.......
2

153X(16) . . . . . . . . . . . . . .
“)+(13 J---------

[, UX(13).. . . . . . . . . . . . . .
345X(16)...............

Y}+(N).-.. . . . . . . .
,3 A(5’9 1.. . . . . . . . . . . . . .
19X(22 . . . . . . . . . . . . . . . .

!)+(2*)---------
LLX(L9)............-..-
$1XP2) ........---.....

(S)+(m)+c-m .....------

..----..

........
51.2
L%
9.33

15.4
0.42

41.2
–6s.3’

3:.0
“V........

--------
--------
........
--------

--.....
.. -. -.. .
------ .

—*Y. +
2.6
0

–13. L
11.1
0

... ....
46.8

.- ...-
2

......-
5L 2--.... ..

T.4BLE 6.—RELAX.>TIOX T.ABLE FOR REINFORCED PAXEL-GROWIN’G-UXIT METHOD

[Forces are in Ib; &spIacernents, in in. X lHI

x ‘ ‘B‘z: : ‘ -L:

------~

. —
E~ternal loads.. . . . . . . ..----. —------ –L22 . . . . . .
–2.37 X (10) . . . . . . . . . . . . . . . . . . . . . . . 120 ,

. . . . . . ------ . . ..-.
–IIL –9 . . . . . . . . ---- ------

0

“--”””k ::1 ‘“”--”-

. . . . . . –H1 -9 . . . ..- ------
–1.975 x (13).......................

-...-.
115.2 —Is. s –522 5. . . . . . –4.0 . ----- ------

_o.~.y x (1~) . . . . ____________________ ______ ------ —’4.2 ------ –a 9 –z? -....- ------

...... ..---- 0 0 –93.4 –26.7 ...... ------
–1.637 x (19) . . . ..--- . . . . . . . . ----- . . . ..- 103.7 –22. 9 —Z. 6 –3. 3
–0.742x (28..................... ......

...... -.-...
_IQ2...... ------ 49.6 –1.5 —37.9

—.— —
...... .----- 0 0 –m 1 —4L 2

–1.45X &?5. ........---_......---- ------
.— ---

93.2 –22.4
–0.wj x (Z@-----------------------...... ------ ...... –LL2 63.6

‘1—1— ‘1—1— 7 7

t

I
—k——.-..-. ......

...... ------.—
.-----
------

...... --....
-.-.. . .-----

. .....

..... .
......
–6i. 9

I ‘“----
—2.9

–l. s –47. 4

-69.i[ -5Q.3

T.ABT~E T.—OPER.IT’IONS TABLE FOR CIRCULAR RIXCr

K: fib) ‘ ‘iyb) ‘4 % CiFb)
Opemrion

1

(Ii Zci=lwrxiizr... . . . . . . . . . . . . . . . . . . . –EL 95 —49. 079 –%. 2$.6 —4.733 64.675
(2) zc~=lo-~ In.., . . . ----------------------- –49.oi9

.............
—5Z 296 6L 675 –22 441 5L 516

(3) u’g=LO-~ radii . . . . . . . . --------------
.. -. -.. . . . . . .

–29. ‘S?36 6L 6i5 —439. S49 31.443 –s. 642 56.0117
(4) UB=1O-$ in----------------------- –4. iz? –32. 441 31.443 –lz~g

(5) tJB=l@iU -----------------------------

XL 14 & 34A
64.675 5L. 516 –xl. 642 20.14 —52.61S 6.632

(61Lcc=lo.~r2diSl...................................... .............. 5: ~~i 8.SW &j2~ — lam.S99

(7)Uc=lo+ ~-------------------------------------------------------- 0.524 0.06s5 –L 563

i%

6.622
0.524
0.06S%-

–LZE3
–0.322

I
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TABLE 8.—RELAXATION TABLE FOR CIRCULAR RIXG

\

Forces and
momen k

\

N* iNB
%)

1>c
(h-lb) (in.-lb) $$ (R) (lm.-lb) (Ti)

Operation
——

l?~ternal forces .. . . ..-. --. -.-... -=-------- –1. 84 –8. 75 —55. o 59.5 3s. 1
–0.00778X(A) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.84 0

–53. 1 -;.9
0.7 -0.1 –o. 1 0

“-8. 75 –54. 3 59.4 3s. o –53. l—
-o.2x(s)--------------------------- 8 8.75

–~ 9
–14.0 4.3 -8.0 0

— ——

0 –6s.3 ?2. 7
-o.353x(c)-----------------------------

-53.1
: 0 –8. 6

-2.% 0
–2.2 –1 : 53.1 0

0 0 —76. 9 61.5 27.8
–77.8X(D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . o 0

0
–472

–23. 9
–34. o –o. 2 0 23.9

0 0

——

—549 27.5
–2.98x(E] ---------------------------- o

27.6
0

0 0
549 . –27.5 –2.7. 5 0 0

0 0 0- 0 0.1 0~—– 0

Check-table results . . . . . . . . . . . . ..___ ._.

I_
0.0171 0. CQ30 0.5095 –0.0043 –o. 0053 -0.0726 –0. 01!21

TABLE 9.—OPERATION’S T.4BLE FOR EGG-SHAPED RIN’G

-

\
Forces and

moments

‘\\ ;4

OperatIon ‘\

(% (ii%)

I

o,4=10-~ in . . . . . . . . . . -------------- –3. 34333
u’B=lo-4radian . . . . . . . . . . . . . . . . . . . 8.92216
flE=lO-~ in . . . . . . ..-_. -... -------- –2. 69614
arJ=lO+ in . . . . . . . . . . . . . . . . . . . . . . . . 3.96771
uJc=lO-d, radian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OC=1O-4m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r4c=10-~in . . ----- .-— — ------- --- ------- -. .-..,
tiD=lo+h..................... ...----......

& 92216
–327. 866

11.4697
–13. 1014
–61. 242

& 10267
0

------- -------

–2. 60614
11.4697

–4. 0w31
3.4352

-g. 10267
0.66158
0

. . . . . . . . . . .

3. ~6771
–13. 1014 –61. 242

3.4352 –& 10267
–30. 9566

0 –2. 367
–2. ~5622

2:. mm –5. 24667
.. ----- ------ –7, 3524

TABLE 1O.—RELAX.4TION’ TABLE FORIEGG-SH.IPED RING
—

\
Forces and

moments

\

(%

Operation

NE!
(in.-lb) (%I NC

(in -lb) (%)

I
o

.40! —592
External forces. . . . . . . . . . . . . . . . . . . . . . . – 51M
–149.2X(i) . . . . . . . . ..._. __...-.__ WI

——
–1338

0
0

-603
0

-403x(8) . . . . . . . . . ..-. ____________ 1:
–1330

0
o

2960
11

451 418
-m
m

o
0

-1330
0

—.
–1330

1615

402 –592

o 29

402 –563
–402 62

2263
—2$s5

451
-451

.—

13~

418
63 .—

0
0

0
2Mx(l). _ . . . . . ..__ . . ..__-— --------- 0

.—

475
0

4s.1
–s

4LNx(F). - . . . . . ----------------- 18
285
0

475
—WI

13g
–138

473
15

0
0

0
–9.4X(J)...--.........--= ......... o

——

m
24

309 –

309.971

0 –492
–2 493

–2 ~..

–2.231 0.93s

—285
9

0
0

———
o

-o. mz

.t%z
– Klz

n

o
0

0

-o. 2ifJC!hccktable- . . . . . . . . . . . . . . . . . . . . . . . . .
k++

-Zi6

–?20 405 -0.351
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TABLE 1I.—OPERATIONS TABLE FOR OVAL-SHAPED RING

Forces and
mc!nlents

RA 3’E A:c .VE

(lb) (h-1b) fti (M (ii-lb) $1 :fi (in_-lb)

lperation

sA=lo-3 h --------------------------- —7. 1310 5.9022 —4. 5ii8 14662 .=%:&.

t0~=16+.radian . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . .

5. m —4$4434

-------- --
6.7238 –i8. 411 1.8376 43.876 ----------

UB=IO+ m. . . . . . . . . . . . . . . . . . . . . . . . . . . —~- 5=8 6.7238 –12.093 a 556%1 — L 8576 —2. 227i 13.781

llB=m+ ti . . . . . . . . . . . . ------------- 14.662 –78. 411 a 5.55% –34. 510
. . . . . . . . . .

45.876 –13. 781 43. %4

uc=16-J.radiam . . . . . . --------------- .— . . . ..-.

. . . . . . . ..-

–3S. 499 –1.8576 45.876 –432. 37 —~. 623 –~ @J

Uc=lb$ lo --------------------------- . . . . . . . . . . L 8576 —2. 22i7 –13. 781 0 –!- 9231 0 –L &576

Zlc=llw be . . . . . . . . . . . . ------------- . . . . . . . . . . 45. &76 13.781 49. %4 —i7. 623 0 –lW 34 45.876

~~=ltk~.radti . . . . . . . . . . . . . . ..--... . . . . . . . . . - ---------- –38. 4?9 –1.8576 45.876 –432. 37

UD=l@ ~ ..............------------ ----—-... -------... L.3W6 –2. Z27i –13.781 o

UD=lo–g id -------------

----------

.-..— .-— ---------- .........- ------. .. 45.S76 13.781 49.974 —ii. 623

ws=I@ radial ------------------ ---------- ---------- _~ <gg

9E=1O-3 in. -.........-----..—....—-

---------- ----------

-------- . ------..-- .. —------ 1.8576

&E=lo-3. il. --. - . . . . . .. —------------

---------- ---------- ----------

---------- . . . . . . . ..- 45. s76

Sr=lo+ p . . . . . . . . . . . -----------

-- . . . . . ..- ----------

---------- _---_--..- - __ . . . ----
uG=1O+ ~.. .-.. ---. -.-. --------.. —- -—--—...

. . . . . . . ..- ---------- - .- .__ . ..-

---------- ----_-...- -—-—--- ---------- ---------.

A’.g
;; %) (ii.-Ib) :; (T; (T$j ;6

Operation

s’.{= lc-~ in.., . . . . . . . . . . . . . . . . . . . . . . ------------- ------- . . . .

tr~=lo+ -radian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -----------
. . . . . . . ..- . . . . . . . . . . . . . . . . . . ..-

. . . . . . . . . . ---------- ------ . . . .

V,9=1O+ lo... --.. ---_... ----------_ .----. —--....

. . . . . . . . . . ----------
. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-

XB=10-3 h_ . . . . . . . _________________ ------------- ----------- . . . . . . .

tcc=lo-s.mdlan . . . . . . . . . . . . . . . . . . . . ..--. —----

---------- -----....- . . . . . . . ..-

L 8576 45. ~T6

Rc=lo+ ~.- . . . . . . ..-. - . . . . . . . ..-.... ---. —

. . .. —---- . . . . . . . . . . . . . . . . . . . -
–2. % 13. 7s1 -- . . . . . . . . .

UC= IO-3 m--------------------------------------

------- . . . . . . . . ..- -

—13. ml 49. W4 . . . . . . . . ..- ---------- . . . . . . . ..- ----------

ZmJ=w.radiam . . ..-— -------------- -. —ii. 623 –38. .S9 L 8576 45.8:6 --------- —--—-
FD=1O+ lL1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –!. 9231 0 –~ ~~6 —2. m 13.781 ---------- ----------
UD=lO–$ ii ___________________________ . . . . . . . . . . 0 –lIM.34 -13.781 49. W4

WE=10-S radia l.- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –L8576 45. 5T6 –649. 24 –18. 056 – 67. WI –5. WEn 16.025

8E=lcH in . . . . . . . ..- . . . . . . . . . . . . . . . . . . . . . -------- —-: $27 –13. W. –K% 0.56 –53. 957 –40. 533 –4.5ii8 1.3355

lbE=lo-$.iLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49.974 –67. oSI –40. 533 – M. 37 –14. EJ52 –L33.55

O?=lba m.. -.. - . . . . . ..-- . . . ..--. -.--... –.--—-... -. —------- ----------- –5. 9020 –4 5778 –14. 662 —7. 1310 0

C’G=1W8 iI. . . . . . . . ..---_ . . ..---. _-. — ----------- 16.025 L 3355 –L 3355 0 –l. W6

TABLE 12.—GROUP OPER.ITIONS IX GROWING-UNIT METHOD FOR SEGMENT =

-.
( Wi XdispI~cemmNs of joint B:

WB, r3d1w -------------------------------------

I

?.4=IN in.
KC= SC=7LC=0

II

ICC= 10+mdisn
9.4=CC=16C=0

la699
–339.56
– 10.093
–53. iil
–33. 4s9

Lam
45. sai

III

Uc= 10+ in.
S4=ICC=UC=0

1.3ii6
—2.222
–13.T61

0.0-35554
–o. 17353
–0. 10720

Uc=le+ in.
FI.4=KC=UC=0

’45.876
13.781
+9. 974

0.017S+7
L 1763
0.232.73
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TABLE 13,—GROUP OPERATIONS I&T GROWING-UNIT METHOD FOR SEGMENT ~

[

Nc=–389.58zIr–10.093xIII–53.771zrv-(R. H. S. in JVC)=II
Rc =–10,093.TII-6.7529WI-1 O.615ZIV–(R. H. S. in Rc)=O
2’c=-53.771uI–10 .615JJH-54.199zIv-(R. H. S. in 2’c)=O 1

Group
.—

‘\
Displacement

\\

- \

\

Operation ‘\

Magnitudes of (II), (HI), and (IV):

n;....................=...=..........................

(I)=1
wD=”D=~D=(J

10.699
—1. 8s71

3.2615

0.021497
–o.53s’43

0.14430

–o. 94505
6.792$

–O. 74924
0.77749
0
0.
0

171

to~ = 10~ radian
[I)=oo=w=O

–38. 489
–1. 8576
45.876

–o.25291
–2. 3436

L 5564

6.7928
–3<6. &3
– 16.697
–43. 745
–3s. 489

1.8576
45.676

VII

1.8576
-2.2277

-13.781

0.016327
0.10521

-0.32081

–o. T4924
– 16.697
–5. 6500

– 12.45s
-18.576
–2. 2277
13,781

VIII

llD=lo-8 in.
(f)=tCD=CD=o

45.ml
13.781
4’3.w!

0.77749
–43. 7’f5
-12. 45s
-50.817

45.876
-13.731

49.974

TABLE 14.—GROUP OPERATIONS IN GROWING-UNIT METH(jD FOR SEGSIENT ABCDE
-

[

IV-E= –346.S8r Fr– 16.69z w -43,7451 VJIZ– (R. H. S. in A’E) =0
R,z=-16.697.rrI-5.6500x PJz-12.45SJrrIr-(R. H. S. in Rd=O
TE= –43.745rrf–12.45SZ vJr–50.817r vrrr–(R. H. S. in Tfi)=O 1

Group Ix x XI XII

\

Displacement

\

(v) =1 w g= 10-$ radian 06= 10-$in.
tUB=VE=UE=o

UE=IO-*[n.
W)=17,5=UB=0 (V)=UE=UFO (V)-lcs=tprl

Operation

‘\

(– 1) Xright-hand side in equation fox
IVA., ti.-lb -------------------------------------------- 6.7928 –38. 489
Rs. lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.8576
–O. 74924

46. S70
– 1.8576

Tz, lb... - . . . . ..__ --_. __.. ___. _._--. ..-. -.-_ . . ______
–2. 2277

0.77749
13.781

45.876 -13.781 19.074

Magnitudes of VI, VII, and Y-III:
2\.I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.028042 –o. 16186 0.037474 –O. @32242i
zvll....=-------------------------------------------- –O.42GIN -4_6X12 0.3.5713 0.59436
zvlll................................................=. 0.095744 2.18s5 -0.39100 0. mmm

Forces and moments:
R~, Ib ------------------------------------------- –~ ;00:0 4.1055
.A”fi, h.-lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–o. 31703
–533.92

0.19220

RE, lb.. - . . . . . . . . . . . . . . .._. _ . . . . ..- . . . ..-_. _________
-38.099 -29.579

–o. 31703 —3s. 099 –49. 295
Tz, lb . . . ..- . . .._ . . ----------------------------------

-53.422
0.19226 –29. 579

RF, lb------------------------------------------------ o
–53. 432 -78.322

–5. ‘mm
RG, lb.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

–4. 5778
0

–14.602
l& 52.5 1.3355 -1.3356

—
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TABLE 15.—DETERMIh~ATIOX OF TOTAL DISPLACEMENTS IN GROWIA’G-UXIT METHOD

Re12ted tables U7B,UE,mcf u= from table 12 @J, ~. and W? from ta~k H or l,j

‘: ‘=’: 4::-- ‘:-- : :; z, ;, ‘:

[.--- . . ..- . . ..--. .-_ . . . . . . . ..--. -.-- . . . . . .
D . . ..--- . . . . . . . . . . . ..-.. ----------------- --------------- 1

k, ‘-------------1

rfI- . . . . . . . . . . . ..-. -..-. -.-.. . . . . . . . . . . . . . --------------- . . . . . . . . . . . . . . . . ‘----i --------- :::::;::::::::: ------------- -----------:::: --------------- ---------------
n-.

--”------- ” --------------------------- “-------------- ‘---” ”----------- --- WEG--”\-. . . . . . . . . . ..-.. - . . . ..--. -.-.. .-.. -_.-._. 1 a 021$97 0.1MO 1
!T--------------------------------------- . . . . . . . . . . . . . . .

------- . . . . . . . .-- . . . . . . . . . . . . ------- --------
–0. Z.5xd —3. 343+3 1. w. 1 –:. 31wl

\-rf . . . . . . . .. . . . . . . ----------------------- . . . . . . . . . . . . . . .
.. . . . . . . . . . . . .

0.W6327 0.1052L –o.323s4 1 –3=. 0’S
tin ........................-..--...-..........i------ +. owxd9

.. ----- . . . . . . .
0. s53.t6 0.76472 . . . . . . . . . . . . . :::::;:;:~:: -- .:.--i.%.. -- 90. 5LS

IX . . . . . . . . . . . . . . . . . . . . . ------------------ –a (ww2 –u 56732 i cN5i4t
s . . . . . . . . . . ------------------------------ -... ---: . . . . . . .

0.392433 1
–0. L9736

= ~=
2. w9 –a 161S6 —4–6T&l 2. 1S-SS 11 LS4

XI . . . . . . . . . . . . . . . . . . . . ------------------ . . . . . . . . . . . . . . . 0. O1OW3 –o. W% –o. 35525 0. C!3747* 0. 3s13 –O. 39LWI —5L 51S
xII-------------------------------------- ..- . . ..i------ o. 0197ss O.X438 0.4+7XI . . . . . . . . . . ..- _a M~>T a w136 o. .S3963 .=. 771
xIrI. ..- . . . . . . . . . . ----------------------- –o. mwoi –a 50331 a 45975 0.024494 a 1661.5

_:n ~ _:::’
~ :;y

–W. 73
An- . . . . . . . . . . . ..- . . . . . . . . ..-.- . . . . . ..–. --------------- —a OIL7442 –o. 64:?+6 –a ~-~ --------- . . –o. 8S%1s – M. M

Totaf dispiricements . . . . . . . . . . . . . . . . . . –S05. 73 –IL44+ 66455 —7.. 2S6 30. m ------- .--. --. —

ReMed w bles ~, ~~, ~d ~~ from c~bI~ 11 Or 15 ~. CJ2 . n~ WC from tabk 15

Prime&sp13epment

“\

M&@udes of
gmmpdisplwe.

27=1 tca=IFmdLln rE=lo-3in. MS=LO+ in. -=1 8P=Kr~in. ments expIfeitly

‘\

Ix x
used m

XI XLf XHI m bahcing

Grcmp OIWrat iOnS

‘----- 7 1--” ------------

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- . . . . . . . . . . . . . ..- . . . . . . . . . . . . . . ..- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . o
II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ----------------------------------
n~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- ---------------- --.--.-----------1----------------- ---------------------------------------------------

L 0476
2L7. 61

::. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ---------------------------------- —4S. E6

-------.-----..—.
\T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–:. 3103

\m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..- ---------------- ----------------- ..------. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ---------------- –Z?& w
}TII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ----. ---i ------- ----------------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w. 51s
Ix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “-”--i---------”- ::::::;:::::::::: ----------------- ----------------------------------

. . . . . . . ------- ------ -------- . . . . . .
IL ISA

xI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -----------------------------
=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -----. --i------- -----6: %-Gii--- ------~-~<~---

‘---------------- :_:;:e ~~:

L
xm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a omzs
XIl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –a 01>S2 o. W3w —a 53:5

Total dis~,I~cvmeats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –m. 73 6.2331 –42. ml 32. ml
l“---------------

T.\BLE 16.—GROUP OPERATIOX-S IX REL.KXATION METHOD FOR SEG31ENT ABCD

GrouP XT XVI xi-n

DIspIwement zrc=uk$radkn nc=lo-~ill. Uc=lc+in.

Orwation w=ac=/cD=sD=IiD=O VJC=2SC=2CD=VD=UD=0 tCC=OC=U’D=ZJD=UD=O

(–10$) X right.hmd side in ewni ion for:
R.,, Ib . . . . . ..- . . . . . . . . . . . . --------------------------- o 0
NB, in.-lb . . ..- . . . . . . ..-. -.. -.----..._—-... . . . . . . . . _J. .J$g L S576 45. s%
R.e,Ib ..----- . . . . . ..--- . . . . . ..- . . . ..-— . . ..-_-- . . . . . .._ – L h556 _~ ~z~ 13.7S1
TE. lb . . . . . . . . ..- . . . . . . . . . . . ..–--— ------------------ ~E,~76 –13. 7s1 49. 97.!

(lIW X dkphcernents of joimts A ad E:
OA, m. .: ---------------------------------------------- 4.01% –a mm LZ53
w~,.ndmn. . . . . . . . ..- . . . . . . . . . . . ..-. -_--. —..--. _______ –o. 3s255 a 05223 –o. 014540
RB,p .............................................. ... —L 7s42 a Ow&s? 0.705-54

as. ln . . . . . . . . . . . . . . . . . -------------------------------- L 52i7 –o.33559 a szw
—

Forsss and momenrs:
Nr, im-Ib. . . ..- . . . . . . . . . . ..-.-.. __ . . ..-— ------------ —346. 56 –17. 67S —40.662
Rc, lb------------------------------------------------- —17.678 —5. 4LN –Uga

Tc,lb . . . . . . . . . . ..-_ . . ..---— . . . . ..--_-— ------------ -am —~ g= –a 203

JI’D,ln..lb-------------------------------------------- —.?,s.Qg — L S556 43.S7s

RD.lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L S576 —2. 2277 —13. 7s1
TD, lb . . . . . . . . . . . . ------------------- ~j. ~lj__ -—------- 13. isl 49.974
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TABLE 17.—GROUP OPERATIONS IN RELAXATION METHOD FOR SEGMENT CDEF–G

[

Ng= –649,24w ~-18.05CO~–67.081>z ~–5.WX#F+16.02:0 o– (R. EI.S. in h’~) =0
R~=–18,05fm ~–53,95iOg–40.533 u~-4.57iWp+l.335~t@ -( R,E.S. iU RK)=O
‘Tx=-67.080w S-40.W301-126.37u X-14.W20P-l.W5:0 ~-(R. E.S. in T.r) =0
RF= –5.W20U 8-4.577[oz–14.E62us –7.131COP –(R.H.S. in RF)=O
RQ=16.025w.T+I.33550R-1.3355ux -1.8sWQ–(R.H.S. in Roj=O1

Group XVII1 XIX xx
—

‘—
—

~- D“ispUacement WD=10-3 radian 5D=10-8in, UD~lo-$ h.

Operation —--” mc=oc=u~=lJ*=lf~=(l WC= DC=UC= WD=L4D=0
————— _

WC=t>C=CC= ltD=14D=o

(-J::);.~#}:}-:d side iu equation:
–38. 489

R~; lb: . . . . . . . . ..=. =.~. . ..= . . . . ..~===.==.~~:::; ~~=:~==::
—1.8576 45.876

1.8576 -2.2277 -13. 7s1
T~. lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4; 876 13.781 4Q,974
1+., lb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o 0
RG, lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o — o 0

(10$)Xdi~placements ofjoints E, F,and G:

.

w~.. radian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.1703 –0.032725
OK,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._ . . ----------- -0.42970 –; ~s;

-o. WW75
-0.78327

uE.. m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.74456 0.70421
0.R,~n. . . . . . . . . . . . . . . ..=. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1. H’ii – 0.32667 -1.1229
OG, u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –2. 2753 –O. 57676 -L l$W

— —

Forces and moments:
Arc,in.-lb. . . . ..---—..- .. —— . . . . . . . . . . . . . -------- . . . . . –3% 489 L 8576 45.676
Rc, lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –L 8576 –2. 2277 13.781
Tc, lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45.876 –13.871 4Q,974
ND, in..l b . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . –392. 46 11.535 -42,205
l?D,lb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IL 535 –6. 2441 12,705
TD. lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –42. 305 12.706 –W.25Q

TABLE 18.—GROUP-OPERATIONS T.4BLE FOR RELAXATION METHOD

[Forces and moments at. joints A, B, E, F, and G are zero for all operations]

\

ForcssandmDments

12?.2

\

(M.-1b) t; ;4 (ii~b) :6 TG

Operation
\

(xv)= l--..-.-._._-_................ –336. 45 –17. 678 –4o. 062 –38. 4S9 1.8576
(XVI) =l---------------------------- –17. 678 -5.4150 –12.928

45.876
– L 8576 –2.2277 13.781

(XVII) =l--------------------------- -40.662 -12.928 -50203 45.876 –13. 781 49,974
(XVIH)=l-- . . . . . . . . . . . . . . . . -------- –3S. 489 –1. 8576 45.876 –392. 46 11.535 -42.305
(X1 X)=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . L 8576 -2,2277 –13. 781 11.535 --; ;4J 12.706
(xx)= ]............................ 45.876 13.?81 49.974 -42.305 -50.239



RECOMMENDATIONS FOR REINFORCED-PANEL AXD FUSELAGE-RLNG PROBLEMS
z~.~

T.4BLE 19.—REL.iXATION T.ABLE FOR GROUP OPERATIONS

Forces and moments

step
A-B RB A“c;;, (%

A

ND
(ii-lb) (lb) (k-1b)

$:j
& (in.-lb)

Operation

EWzrnP.I10Ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ------------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-
1. . . . . . . . . . . . . . . . . . 342X(K) . . ---------------------------------- . . . . . . . . . . . . . . ----. --- . . . . . . . . .._- . . . . ..l . . ..--- . . . . . . –4

0,

..~ II :~ -: j :: “

2.............-.-..–ls.4x(h4-------------------------------. ......................................--------------

3....-.....--.-...2Mx(h11-------------------------------------------------------------------------------------------

L................. -Losx(o).....-.--.-.-....-.--.-...—.--– ....- ---------------------------------------~.............

5...---------------–15.7X(K)-..-......-.-...-.--.-----—-----------------------------------------------------------1 ?4! % –13 210

w 29 –3s –%4

6. . . . . . . . . . . . . . . . . . –o.T6x(x~m)------------------------------- --------------, -------------------------- -------------

I r

31 10 3S –35

337 3~ –239

Check able.... . . . . . . . . . . . . . . . . .._-- . . . ..-...__.._.-...--— ----- - 0. 00L 0.310 0.025 0. L% 32476 g. ~ –: ;~ –27S. 26

Fwesandmoments

step

~ -1

LATE
;{) $) (h-lb) ;6 :$ ;6 ;;

Operation

Edermallm@-------------------------------- –266 —%;9
1. . . . . . . . . . . . . . . . . . 302X(K)--------------------------------------

------- ---------
121s

. . . ..-. ---------

1 3M
--------- ------- . . . . . . . . . . . . . . . . ------- --------- ------- ------- -- ------- ---------

~5~ 67
2------------------ –l&4x(M -----------------------------------

. . . . ..- . . . . . . .
0

------- .--- .—. -
0

252 6i
3. . . . . . . . . . . . . . . . . . 2L4X(N) . . . . . . ..-.- . . . . .._-._ . . . . ..-–_ . . ----- –244

. ..-.-.
–21 . . . . . . . . . . . . . ..- ---------------- ---------------- ---------------- ~::::::::::::::::

s I : ,,,,,,,,,,,,,,,, ,,,::::::::::::: ,,:::::::::::::: ,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,4. . . . . . . . . . . . . . . . . . 4.0sx@. . .. . ..-. _..-. -.-.– . . . . ----------- 55

5. . . . . . . . . . . . . . . . . . –15.7X(K)--.._... - . . . . . . ..-- . . .. ..-–.._.-. –a
+:::::: ::::: ::::: ::::: ::::-:

–;! . . . . . . . . . . . . . ..- ---------------- ---------------- ---------------- ----------------

0
6-.- . . . . . . . -------- –ll.xix(m) ..............---......--...... m –E ...-----------------------------------------------------------------------------

10
Cheek table.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3s0 –;;. m – L 734 –o. 001 –O. i~ o.OU3 0. OK


